31 research outputs found
Evaluation of volcano-style field ionization source and field emitting cathodes for mass spectrometry and applications
A volcano-style field ionization source was tested with eight different gases: hydrogen, helium, ammonia, methane, argon, neon, water vapor, and hydrogen sulfide. For ammonia, hydrogen sulfide, and water, the ionization efficiency of the field ionization source was determined as a function of the electrical potential difference between the ionizer and its counterelectrode. The ionization efficiencies for the other gases were too low to be measured in the present apparatus. The operating characteristics of a field emission cathode, were studied, in the presence of the same eight gases at pressures up to 0.00001 torr. The presence of the gases caused little or no significant change in the electron emission from the cathodes. Results indicate that the field emission cathode has advantages over electrically heated cathodes as a source of an electron beam in spacecraft mass spectrometers
Chemistry of fuel deposits and sediments and their predursors
The mechanism of solid deposit formation on hot engine parts from turbine fuels is investigated. Deposit formation is associated with oxidation of the hydrocarbon fuel. Therefore, oxidation rates and soluble gum formation were measured for several jet turbine fuels and pure hydrocarbon mixtures. Experiments were performed at 130 C using thermal initiation and at 100 C using ditertiary butyl peroxide as a chemical initiator. Correlation of the data shows that the ratio of rate of oxidation to rate of gum formation for a single fuel is not much affected by experimental conditions, even though there are differences in the abilities of different hydrocarbons to initiate and continue the oxidation. This indicates a close association of gum formation with the oxidation process. Oxidations of n-dodecane, tetralin and the more unstable jet fuels are autocatalytic, while those of 2-ethylnaphthalene and a stable jet fuel are self-retarding. However, the ratio of oxidation rate to gum formation rate appear to be nearly constant for each substrate. The effect of oxygen pressure on gum and oxidation formation was also studied. Dependence of gum formation on the concentration of initiator at 100 C is discussed and problems for future study are suggested
Oxidation and formation of deposit precursors in hydrocarbon fuels
The oxidation of two jet turbine fuels and some pure hydrocarbons was studied at 130 C with and without the presence of small amounts of N-methyl pyrrole (NMP) or indene. Tendency to form solid-deposit precursors was studied by measuring soluble gum formation as well as dimer and trimer formation using field ionization mass spectrometry. Pure n-dodecane oxidized fastest and gave the smallest amount of procursors. An unstable fuel oil oxidized much slower but formed large amounts of precursors. Stable Jet A fuel oxidized slowest and gave little precursors. Indene either retarded or accelerated the oxidation of n-dodecane, depending on its concentration, but always caused more gum formation. The NMP greatly retarded n-dodecane oxidation but accelerated Jet A oxidation and greatly increased the latter's gum formation. In general, the additive reacted faster and formed most of the gum. Results are interpreted in terms of classical cooxidation theory. The effect of oxygen pressure on gum formation is also reported
Proton Affinities of H2S and H2O
Ion cyclotron single- and multiple-resonance spectroscopy have been used to identify and examine the energetics of ion-molecule reactions in which H3O+ and H3S+ are involved either as product or reactant. The reactions observed provide narrow limits for the gas-phase proton affinities of these species, giving 164 ± 4 kcal/mole for H2O and 178 ± 2 kcal/mole for H2S
Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments
The status of the joint NASA/Rockwell Active Flexible Wing Wind-Tunnel Test Program is described. The objectives are to develop and validate the analysis, design, and test methodologies required to apply multifunction active control technology for improving aircraft performance and stability. Major tasks include designing digital multi-input/multi-output flutter-suppression and rolling-maneuver-load alleviation concepts for a flexible full-span wind-tunnel model, obtaining an experimental data base for the basic model and each control concept and providing comparisons between experimental and analytical results to validate the methodologies. The opportunity is provided to improve real-time simulation techniques and to gain practical experience with digital control law implementation procedures
Photoionization and ion cyclotron resonance studies of the ion chemistry of ethylene oxide
Time-resolved photoionozation mass spectrometry (PIMS), ion cyclotron resonance spectroscopy (ICR), and photoelectron spectroscopy have been employed to study the formation of the ethylene oxide molecular ion and its subsequent ion–molecule reactions which lead to the products C2H5O+ and C3H5O+. Earlier observations that a structurally and energetically modified species (C2H4O+) * is an intermediate in the production of C3H5O+ are confirmed. The PIMS data detail the effects of internal energy on reactivity, with the ratio of C3H5O+ to C2H5O+ increasing by an order of magnitude with a single quantum of vibrational energy. Evidence is presented for the formation of (C2H4O+) * in a collision-induced isomerization which yields a ring-opened structure by C–C bond cleavage. This species contains considerable internal excitation which is relaxed in collisions with ethylene oxide or bath gases such as SF6 prior to reaction. The relaxed ring-opened C2H4O+ ion reacts with neutral ethylene oxide by CH2 + transfer to yield an intermediate product ion C3H6O+ which gives C3H5O+ by loss of H. Isotopic product distributions observed in a mixture of ethylene oxide and ethylene oxide-d4 are consistent with this mechanism. The effects of ion kinetic energy on reactivity are explored using ICR techniques. Increased reactant ion kinetic energy leads to collision-induced dissociation of C2H4O+ rather than isomerization to the open form
International money markets: eurocurrencies
Eurocurrencies are international markets for short-term wholesale bank deposits and loans. They emerged in Western Europe in the late 1950s and rapidly reached a global scale. A Eurocurrency is a form of bank money: an unsecured short-term bank debt denominated in a currency (for instance, US dollars) but issued by banks operating offshore, in a geographical location or a legal space situated outside of the jurisdiction of the national authorities presiding over that currency (for instance, the Federal Reserve). In Eurocurrency markets, banks intermediate mainly between foreign residents. They borrow funds by "accepting" foreign currency deposits and lend foreign currency-denominated funds by "placing" deposits with other banks, by granting short-term loans or investing in other liquid assets. Historically, Eurodollars accounted for the largest share of Eurocurrencies, although other international currencies (Deutsche Marks, Japanese yens, and especially Euros since 1999) played an important role. Eurocurrency markets were a manifestation of financial integration and interdependence in a globalizing economy and performed critical functions in the distribution and creation of international liquidity. At the same time, their fast growth was a recurrent source of concerns for central bankers and policymakers due to their implications for macroeconomic policies and financial stability. This chapter analyzes different aspects of the historical development of Eurocurrency markets and their role in the international monetary and financial system. The first part discusses theoretical interpretations, presents estimates of markets' size, describes their structure, and explains the determinants of their growth. The second part analyzes the spread between Eurodollar rates and other US money market rates, the role of arbitrage, the evolution of risk factors, and the causes of historical episodes of stress and contagion in the interbank market. The last part discusses political economy issues, such as the role of governments and market forces in the emergence of Eurodollars in the 1950s and the failed attempts to impose multilateral controls on Eurocurrency markets in the 1970s