16,059 research outputs found
Electrophoretic separation of human kidney cells at zero gravity
Electrophoretic isolation of cells results in a loss of resolution power caused by the sedimentation of the cells in the media. The results of an experiment to extract urokinase from human embryos during the Apollo Soyuz mission are presented and discussed
Recommended from our members
An optimal inverse method using Doppler lidar measurements to estimate the surface sensible heat flux
Inverse methods are widely used in various fields of atmospheric science. However, such methods are not commonly used within the boundary-layer community, where robust observations of surface fluxes are a particular concern. We present a new technique for deriving surface sensible heat fluxes from boundary-layer turbulence observations using an inverse method. Doppler lidar observations of vertical velocity variance are combined with two well-known mixed-layer scaling forward models for a convective boundary layer (CBL). The inverse method is validated using large-eddy simulations of a CBL with increasing wind speed. The majority of the estimated heat fluxes agree within error with the proscribed heat flux, across all wind speeds tested. The method is then applied to Doppler lidar data from the Chilbolton Observatory, UK. Heat fluxes are compared with those from a mast-mounted sonic anemometer. Errors in estimated heat fluxes are on average 18 %, an improvement on previous techniques. However, a significant negative bias is observed (on average −63%) that is more pronounced in the morning. Results are improved for the fully-developed CBL later in the day, which suggests that the bias is largely related to the choice of forward model, which is kept deliberately simple for this study. Overall, the inverse method provided reasonable flux estimates for the simple case of a CBL. Results shown here demonstrate that this method has promise in utilizing ground-based remote sensing to derive surface fluxes. Extension of the method is relatively straight-forward, and could include more complex forward models, or other measurements
The population of white dwarf binaries with hot subdwarf companions
Hot subdwarfs (sdBs) are core helium-burning stars, which lost almost their
entire hydrogen envelope in the red-giant phase. Since a high fraction of those
stars are in close binary systems, common envelope ejection is an important
formation channel. We identified a total population of 51 close sdB+WD binaries
based on time-resolved spectroscopy and multi-band photometry, derive the WD
mass distribution and constrain the future evolution of these systems. Most WDs
in those binaries have masses significantly below the average mass of single
WDs and a high fraction of them might therefore have helium cores. We found 12
systems that will merge in less than a Hubble time and evolve to become either
massive C/O WDs, AM\,CVn systems, RCrB stars or even explode as supernovae type
Ia.Comment: 5 pages, 2 figures, to appear in the proceedings of the 19th European
White Dwarf Workshop, ASP Conf. Se
A 3D extinction map of the northern Galactic plane based on IPHAS photometry
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. ©: 2014 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present a 3D map of extinction in the northern Galactic plane derived using photometry from the INT/WFC Photometric Hα Survey of the northern Galactic plane. The map has fine angular (~10 arcmin) and distance (100 pc) sampling allied to a significant depth (≳5 kpc). We construct the map using a method based on a hierarchical Bayesian model described in a previous article by Sale. In addition to mean extinction, we also measure differential extinction, which arises from the fractal nature of the interstellar medium, and show that it will be the dominant source of uncertainty in estimates of extinction to some arbitrary position. The method applied also furnishes us with photometric estimates of the distance, extinction, effective temperature, surface gravity, and mass for ~38 million stars. Both the extinction map and the catalogue of stellar parameters are made publicly available via http://www.iphas.org/extinction.Peer reviewe
Struggling and juggling: a comparison of assessment loads in research and teaching-intensive universities
In spite of the rising tide of metrics in UK higher education, there has been scant attention paid to assessment loads, when evidence demonstrates that heavy demands lead to surface learning. Our study seeks to redress the situation by defining assessment loads and comparing them across research-and teaching intensive universities. We clarify the concept of ‘assessment load’ in response to findings about high volumes of summative assessment on modular degrees. We define assessment load across whole undergraduate degrees, according to four measures: the volume of summative assessment; volume of formative assessment; proportion of examinations to coursework; number of different varieties of assessment. All four factors contribute to the weight of an assessment load, and influence students’ approaches to learning. Our research compares programme assessment data from 73 programmes in 14 UK universities, across two institutional categories. Research-intensives have higher summative assessment loads and a greater proportion of examinations; teaching-intensives have higher varieties of assessment. Formative assessment does not differ significantly across both university groups. These findings pose particular challenges for students in different parts of the sector. Our study questions the wisdom that ‘more’ is always better, proposing that lighter assessment loads may make room for ‘slow’ and deep learning
Entropy and information in neural spike trains: Progress on the sampling problem
The major problem in information theoretic analysis of neural responses and
other biological data is the reliable estimation of entropy--like quantities
from small samples. We apply a recently introduced Bayesian entropy estimator
to synthetic data inspired by experiments, and to real experimental spike
trains. The estimator performs admirably even very deep in the undersampled
regime, where other techniques fail. This opens new possibilities for the
information theoretic analysis of experiments, and may be of general interest
as an example of learning from limited data.Comment: 7 pages, 4 figures; referee suggested changes, accepted versio
Elemental boron doping behavior in silicon molecular beam epitaxy
Boron-doped Si epilayers were grown by molecular beam epitaxy (MBE) using an elemental boron source, at levels up to 2×1020 cm−3, to elucidate profile control and electrical activation over the growth temperature range 450–900 °C. Precipitation and surface segregation effects were observed at doping levels of 2×1020 cm−3 for growth temperatures above 600 °C. At growth temperatures below 600 °C, excellent profile control was achieved with complete electrical activation at concentrations of 2×1020 cm−3, corresponding to the optimal MBE growth conditions for a range of Si/SixGe1−x heterostructures
- …