513 research outputs found

    On the origin of the distribution of binary-star periods

    Get PDF
    Pre-main sequence and main-sequence binary systems are observed to have periods, P, ranging from one day to 10^(10) days and eccentricities, e, ranging from 0 to 1. We pose the problem if stellar-dynamical interactions in very young and compact star clusters may broaden an initially narrow period distribution to the observed width. N-body computations of extremely compact clusters containing 100 and 1000 stars initially in equilibrium and in cold collapse are preformed. In all cases the assumed initial period distribution is uniform in the narrow range 4.5 < log10(P) < 5.5 (P in days) which straddles the maximum in the observed period distribution of late-type Galactic-field dwarf systems. None of the models lead to the necessary broadening of the period distribution, despite our adopted extreme conditions that favour binary--binary interactions. Stellar-dynamical interactions in embedded clusters thus cannot, under any circumstances, widen the period distribution sufficiently. The wide range of orbital periods of very young and old binary systems is therefore a result of cloud fragmentation and immediate subsequent magneto-hydrodynamical processes operating within the multiple proto-stellar system.Comment: 11 pages, 4 figures, ApJ, in pres

    Detection Rates for Close Binaries Via Microlensing

    Get PDF
    Microlensing is one of the most promising methods of reconstructing the stellar mass function down to masses even below the hydrogen-burning limit. The fundamental limit to this technique is the presence of unresolved binaries, which can in principle significantly alter the inferred mass function. Here we quantify the fraction of binaries that can be detected using microlensing, considering specifically the mass ratio and separation of the binary. We find that almost all binary systems with separations greater than b∌0.4b \sim 0.4 of their combined Einstein ring radius are detectable assuming a detection threshold of 3%3\%. For two M dwarfs, this corresponds to a limiting separation of \gsim 1 \au. Since very few observed M dwarfs have companions at separations \lsim 1 \au, we conclude that close binaries will probably not corrupt the measurements of the mass function. We find that the detectability depends only weakly on the mass ratio. For those events for which individual masses can be determined, we find that binaries can be detected down to b∌0.2b \sim 0.2.Comment: 19 pages including 6 figures. Uses phyyzx format. Send requests for higher quality figures to [email protected]

    Luminosity-Colours relations for thin disc main-sequence stars

    Full text link
    In this study we present the absolute magnitude calibrations of thin disc main-sequence stars in the optical (MVM_{V}), and in the near-infrared (MJM_{J}). Thin disc stars are identified by means of Padova isochrones, and absolute magnitudes for the sample are evaluated via the newly reduced Hipparcos data. The obtained calibrations cover a large range of spectral types: from A0 to M4 in the optical and from A0 to M0 in the near-infrared. Also, we discuss the of effects binary stars and evolved stars on the absolute magnitude calibrations. The usage of these calibrations can be extended to the estimation of galactic model parameters for the thin disc individually, in order to compare these parameters with the corresponding ones estimated by χ2min\chi{^2}_{min} statistics (which provides galactic model parameters for thin and thick discs, and halo simultaneously) to test any degeneracy between them. The calibrations can also be used in other astrophysical researches where distance plays an important role in that study.Comment: 8 pages, including 12 figures and 4 tables, accepted for publication in MNRA

    The Mass-Function of Low Mass Halo Stars: Limits on Baryonic Halo Dark Matter

    Get PDF
    We derive mass functions (MF) for halo red dwarfs (the faintest hydrogen burning stars) and then extrapolate to place limits on the total mass of halo brown dwarfs (stars not quite massive enough to burn hydrogen). The mass functions are obtained from the luminosity function of a sample of 114 local halo stars in the USNO parallax survey (Dahn \etal 1995). We use stellar models of Alexander \etal (1996) and make varying assumptions about metallicity and about possible unresolved binaries in the sample. We find that the MF for halo red dwarfs cannot rise more quickly than 1/m21/m^2 as one approaches the hydrogen burning limit. Using recent results from star formation theory, we extrapolate the MF into the brown-dwarf regime. We see that likely extrapolations imply that the total mass of brown dwarfs in the halo is less than ∌3%\sim 3\% of the local mass density of the halo (∌0.3%\sim 0.3\% for the more realistic models we consider). Our limits apply to brown dwarfs in the halo that come from the same stellar population as the red dwarfs.Comment: Significant changes over previous submission. To be published ApJ Letters, 16 pages, latex, one figur

    On the Chandra X-ray Sources in the Galactic Center

    Full text link
    Recent deep Chandra surveys of the Galactic center region have revealed the existence of a faint, hard X-ray source population. While the nature of this population is unknown, it is likely that several types of stellar objects contribute. For sources involving binary systems, accreting white dwarfs and accreting neutron stars with main sequence companions have been proposed. Among the accreting neutron star systems, previous studies have focused on stellar wind-fed sources. In this paper, we point out that binary systems in which mass transfer occurs via Roche lobe overflow (RLOF) can also contribute to this X-ray source population. A binary population synthesis study of the Galactic center region has been carried out, and it is found that evolutionary channels for neutron star formation involving the accretion induced collapse of a massive ONeMg white dwarf, in addition to the core collapse of massive stars, can contribute to this population. The RLOF systems would appear as transients with quiescent luminosities, above 2 keV, in the range from 10^31-10^32 ergs/s. The results reveal that RLOF systems primarily contribute to the faint X-ray source population in the Muno et al. (2003) survey and wind-fed systems can contribute to the less sensitive Wang et al. (2002) survey. However, our results suggest that accreting neutron star systems are not likely to be the major contributor to the faint X-ray source population in the Galactic center.Comment: 12 pages, 3 figures, 1 table ApJ in press (Dec 2004). Substantial change

    Using binary statistics in Taurus-Auriga to distinguish between brown dwarf formation processes

    Full text link
    Whether BDs form as stars through gravitational collapse ("star-like") or BDs and some very low-mass stars constitute a separate population which form alongside stars comparable to the population of planets, e.g. through circumstellar disk ("peripheral") fragmentation, is one of the key questions of the star-formation problem. For young stars in Taurus-Auriga the binary fraction is large with little dependence on primary mass above ~0.2Msun, while for BDs it is <10%. We investigate a case in which BDs in Taurus formed dominantly through peripheral fragmentation. The decline of the binary frequency in the transition region between star-like and peripheral formation is modelled. A dynamical population synthesis model is employed in which stellar binary formation is universal. Peripheral objects form separately in circumstellar disks with a distinctive initial mass function (IMF), own orbital parameter distributions for binaries and a low binary fraction. A small amount of dynamical processing of the stellar component is accounted for as appropriate for the low-density Taurus-Auriga embedded clusters. The binary fraction declines strongly between the mass-limits for star-like and peripheral formation. The location of characteristic features and the steepness depend on these mass-limits. Such a trend might be unique to low density regions hosting dynamically unprocessed binary populations. The existence of a strong decline in the binary fraction -- primary mass diagram will become verifiable in future surveys on BD and VLMS binarity in the Taurus-Auriga star forming region. It is a test of the (non-)continuity of star formation along the mass-scale, the separateness of the stellar and BD populations and the dominant formation channel for BDs and BD binaries in regions of low stellar density hosting dynamically unprocessed populations.Comment: accepted for publication in A&A, 11 pages, 4 figures, 1 tabl

    Clusters in the Luminous Giant HII Regions in M101

    Full text link
    (Abridged) We have obtained HST WFPC2 observations of three very luminous but morphologically different giant HII regions (GHRs) in M101, NGC5461, NGC5462, and NGC5471, in order to study cluster formation in GHRs. The measured (M_F547M - M_F675W) colors and M_F547M magnitudes are used to determine the ages and masses of the cluster candidates with M_F547M <= -9.0. NGC5461 is dominated by a very luminous core, and has been suggested to host a super-star cluster (SSC). Our observations show that it contains three R136-class clusters superposed on a bright stellar background in a small region. This tight group of clusters may dynamically evolve into an SSC in the future, and may appear unresolved and be identified as an SSC at large distances, but at present NGC5461 has no SSCs. NGC5462 has loosely distributed HII regions and clusters without a prominent core. It has the largest number of cluster candidates among the three GHRs, but most of them are faint and older than 10 Myr. NGC5471 has multiple bright HII regions, and contains a large number of faint clusters younger than 5 Myr. Two of the clusters in NGC5471 are older than R136, but just as luminous; they may be the most massive clusters in the three GHRs. The fraction of stars formed in massive clusters is estimated from the clusters' contribution to the total stellar continuum emission and a comparison of the ionizing power of the clusters to the ionizing requirement of the associated HII regions. Both estimates show that <~ 50% of massive stars are formed in massive clusters. The cluster luminosity functions (CLFs) of the three GHRs show different slopes. NGC5462 has the steepest CLF and the most loosely distributed interstellar gas, qualitatively consistent with the hypothesis that massive clusters are formed in high-pressure interstellar environments.Comment: 36 pages (figures not included), 16 figures (3 of them are color figures). Figures are in JPEG or GIF format with a lower resolution due to the size limit of the file. For a higher resolution version of the paper, please download from http://www.astro.uiuc.edu/~c-chen/clusters.pdf. accepted for ApJ (scheduled for the ApJ 2005 February issue

    The IntraCluster Medium: An Invariant Stellar IMF

    Get PDF
    Evidence supporting the hypothesis of an invariant stellar Initial Mass Function is strong and varied. The intra-cluster medium in rich clusters of galaxies is one of the few contrary locations where recent interpretations of the chemical abundances have favoured an IMF that is biased towards massive stars, compared to the `normal' IMF. This interpretation hinges upon the neglect of Type Ia supernovae to the ICM enrichment, and a particular choice of the nucleosynthesis yields of Type II supernovae. We demonstrate here that when one adopts yields determined empirically from observations of Galactic stars, rather than the uncertain model yields, a self-consistent picture may be obtained with an invariant stellar IMF, and about half of the iron in the ICM being produced by Type Ia supernovae.Comment: 9 pages, LateX (aaspp4 macro), including one postscript figure. Accepted, ApJ Letter

    Breathing in Low Mass Galaxies: A Study of Episodic Star Formation

    Full text link
    We simulate the collapse of isolated dwarf galaxies using SPH + N-Body simulations including a physically motivated description of the effects of supernova feedback. As the gas collapses and stars form, the supernova feedback disrupts enough gas to temporarily quench star formation. The gas flows outward into a hot halo, where it cools until star formation can continue once more and the cycle repeats. The star formation histories of isolated Local Group dwarf galaxies exhibit similar episodic bursts of star formation. We examine the mass dependence of the stellar velocity dispersions and find that they are no less than half the velocity of the halos measured at the virial radius.Comment: 5 pages, 3 figures, accepted ApJ. Full resolution figures and movies available at http://hpcc.astro.washington.edu/feedbac

    Evaporation of Compact Young Clusters near the Galactic Center

    Get PDF
    We investigate the dynamical evolution of compact young clusters (CYCs) near the Galactic center (GC) using Fokker-Planck models. CYCs are very young (< 5 Myr), compact (< 1 pc), and only a few tens of pc away from the GC, while they appear to be as massive as the smallest Galactic globular clusters (~10^4 Msun). A survey of cluster lifetimes for various initial mass functions, cluster masses, and galactocentric radii is presented. Short relaxation times due to the compactness of CYCs, and the strong tidal fields near the GC make clusters evaporate fairly quickly. Depending on cluster parameters, mass segregation may occur on a time scale shorter than the lifetimes of most massive stars, which accelerates the cluster's dynamical evolution even more. When the difference between the upper and lower mass boundaries of the initial mass function is large enough, strongly selective ejection of lighter stars makes massive stars dominate even in the outer regions of the cluster, so the dynamical evolution of those clusters is weakly dependent on the lower mass boundary. The mass bins for Fokker-Planck simulations were carefully chosen to properly account for a relatively small number of the most massive stars. We find that clusters with a mass <~ 2x10^4 Msun evaporate in <~ 10 Myr. A simple calculation based on the total masses in observed CYCs and the lifetimes obtained here indicates that the massive CYCs comprise only a fraction of the star formation rate (SFR) in the inner bulge estimated from Lyman continuum photons and far-IR observations.Comment: 20 pages in two-column format, accepted for publication in Ap
    • 

    corecore