26 research outputs found

    Single and Combined Effects of Acute and Chronic Non-Thermal Stressors on Rat Interscapular Brown Adipose Tissue Metabolic Activity

    Get PDF
    The aim of this study was to examine whether the thermogenic potential of rat interscapular brown adipose tissue (IBAT) changes in response to acute and/or chronic exposure to non-thermal stressors (immobilization and isolation), by measuring the uncoupling protein 1 (UCP-1) content, MAO-A, SOD and CAT activities, as well as the number of IBAT sympathetic noradrenaline-containing nerve fibers. Both acute immobilization (2 h) and chronic isolation (21 days), as well as their combined effects, significantly increased the IBAT UCP-1 content in comparison to non-stressed animals. When applied individually, stressors increased the number of sympathetic fibers in comparison to controls, whereas in combination they decreased it. The activity of IBAT monoamine oxidase-A (MAO-A) decreased under the influence of each stressor independent of its type or duration. SOD activity coincided with MAO-A decrement, whereas CAT activity had an opposite pattern of changes. We conclude that acute and chronic exposure to non-thermal stressors, immobilization and isolation, respectively, affect the metabolic potential of rat IBAT, judging by the increase in UCP-1 content and sympathetic outflow. However, when acute immobilization was applied as a novel stressor to previously chronically isolated animals, an increase in the UCP-1 content was accompanied by a lower IBAT sympathetic outflow, suggesting that IBAT metabolic function under various stress condition is not solely dependent on SNS activity

    Effect of immobilization stress on gene expression of catecholamine biosynthetic enzymes in heart auricles of socially isolated rats

    Get PDF
    Chronic stress is associated with the development of cardiovascular diseases. The sympathoneural system plays an important role in the regulation of cardiac function both in health and disease. In the present study, the changes in gene expression of the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) and protein levels in the right and left heart auricles of naive control and long-term (12 weeks) socially isolated rats were investigated by Taqman RT-PCR and Western blot analysis. The response of these animals to additional immobilization stress (2 h) was also examined. Long-term social isolation produced a decrease in TH mRNA level in left auricles (about 70%) compared to the corresponding control. Expression of the DBH gene was markedly decreased both in the right (about 62%) and left (about 81%) auricles compared to the corresponding control, group-maintained rats, whereas PNMT mRNA levels remained unchanged. Exposure of group-housed rats to acute immobilization for 2 h led to a significant increase of mRNA levels of TH (about 267%), DBH (about 37%) and PNMT (about 60%) only in the right auricles. Additional 2-h immobilization of individually housed rats did not affect gene expression of these enzymes in either the right or left auricle. Protein levels of TH, DBH and PNMT in left and right heart auricles were unchanged either in both individually housed and immobilized rats. The unchanged mRNA levels of the enzymes examined after short-term immobilization suggest that the catecholaminergic system of the heart auricles of animals previously exposed to chronic psychosocial stress was adapted to maintain appropriate cardiovascular homeostasis

    Effect of Chronic Forced Running on Gene Expression of Catecholamine Biosynthetic Enzymes in Stellate Ganglia of Rats

    No full text
    The sympathoneural system has a profound influence on the heart function. Sympathetic neurons are the major contributors to the huge rise of circulating noradrenaline (NA) level in response to stressful stimuli. Treadmill training in rats is forced exercise which has the propensity to induce both psychological and physical stress. The aim of this study is to examine how chronic forced running (CFR) affects the expression of catecholamine biosynthetic enzymes (tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT)) and cAMP response element-binding (CREB) in stellate ganglia, as well as the concentrations of catecholamines, adrenocorticotropic hormone (ACTH) and corticosterone (CORT) in the plasma of rats. Also, we investigated how the additional acute immobilization stress changes the mentioned parameters. The rat training program consisted of 12 weeks running on a treadmill (20 m/min, 20 min/day). We found that CFR increases TH and DBH mRNA and protein levels in stellate ganglia, which is followed by increased NA concentration in the plasma. CFR reduces the level of PNMT m RNA, while the level of PNMT protein remains unchanged in stellate ganglia. The increased expression of TH and DBH genes positively correlates with the expression of CREB in stellate ganglia and with plasma ACTH level, while reduced level of PNMT mRNA in stellate ganglia correlates with reduced plasma CORT level. The additional acute immobilization stress increased gene expression of catecholamine biosynthetic enzymes in stellate ganglia, as well as catecholamines, ACTH and CORT levels in the plasma. The results presented here suggest that the continuous increase of the noradrenaline biosynthetic enzyme expression in stellate ganglia due to CFR may play a role in growing risk of cardiovascular diseases

    Novel acute stressor effects on interscapular brown adipose tissue sympathetic inervation and UCP-1 content in chronically isolated and spontaneously hypertensive rats

    Get PDF
    Interscapular brown adipose tissue (IBAT) is an energy storing organ involved in the maintenance of homeostasis in stress conditions when the balance of energy supplies is disturbed. The major regulator of IBAT activity is the sympathetic nervous system (SNS). Since genetic background is responsible for the individual differences in neuroendocrine stress responsivity, spontaneously hypertensive rats (SHR) that have a genetically increased general sympathetic output are a useful model for studying adaptive processes in stress conditions. Our aim was to test the effect of acute and/or chronic exposure to various stressors (thermal-cold, psychophysical-immobilization and psychosocial-isolation) on IBAT SNS and the metabolic activity in SHR, by measuring the number of monoamine-containing nerve endings and uncoupling protein-1 (UCP-1) content. The obtained results show that the IBAT SNS activity of unstressed SHR was stimulated by the administration of a single acute or chronic stressor and was independent of the duration or type of stressor, while chronic pre-stress of isolation suppressed further the SNS reaction to novel acute stress exposure. The IBAT UCP-1 content followed SNS changes, suggesting that this system is dominant in the regulation of IBAT metabolic rate in SHR

    Novel acute stressor effects on interscapular brown adipose tissue sympathetic inervation and UCP-1 content in chronically isolated and spontaneously hypertensive rats

    No full text
    Interscapular brown adipose tissue (IBAT) is an energy storing organ involved in the maintenance of homeostasis in stress conditions when the balance of energy supplies is disturbed. The major regulator of IBAT activity is the sympathetic nervous system (SNS). Since genetic background is responsible for the individual differences in neuroendocrine stress responsivity, spontaneously hypertensive rats (SHR) that have a genetically increased general sympathetic output are a useful model for studying adaptive processes in stress conditions. Our aim was to test the effect of acute and/or chronic exposure to various stressors (thermal-cold, psychophysical-immobilization and psychosocial-isolation) on IBAT SNS and the metabolic activity in SHR, by measuring the number of monoamine-containing nerve endings and uncoupling protein-1 (UCP-1) content. The obtained results show that the IBAT SNS activity of unstressed SHR was stimulated by the administration of a single acute or chronic stressor and was independent of the duration or type of stressor, while chronic pre-stress of isolation suppressed further the SNS reaction to novel acute stress exposure. The IBAT UCP-1 content followed SNS changes, suggesting that this system is dominant in the regulation of IBAT metabolic rate in SHR

    The effect of repeated physical exercise on hippocampus and brain cortex in stressed rats

    No full text
    Sensitivity of target cells to glucocorticoids is regulated by the expression of intracellular glucocorticoid receptor (GR), which mediates the effects of glucocorticoids. The level of GR and of its nuclear transporter protein 70 (Hsp70) were followed in hippocampus and brain cortex of adult Wistar rat males exposed to acute (immobilization, cold) and chronic (social isolation, isolation, and 15 min daily swimming) stress or their combinations. Changes in plasma levels of adenocorticotropic hormone and corticosterone were also studied. A significant decrease in cytosol GR and Hsp70 was observed after acute stress. Opposite to that, chronic stress led to negligible changes in both cytosol GR and Hsp70 levels. Isolation, as chronic psychosocial stressor, caused reduced responsiveness to novel acute stressors, judged by the cytosol GR and Hsp70 levels. This was not observed if chronic isolation was combined with 15 min daily swimming prior to acute exposure to immobilization. The data suggest that repeated physical exercise may, at least in some cases, diminish detrimental effects of chronic social isolation on limbic-hypothalamic-pituitary-adrenocortical axis, as judged by the levels of GR and Hsp70 in the Wistar rat brain.Cell Signaling World 2006 Conference, Jan 25-28, 2006, Luxembourg, Luxembour
    corecore