2 research outputs found

    Efficient CSL Model Checking Using Stratification

    Get PDF
    For continuous-time Markov chains, the model-checking problem with respect to continuous-time stochastic logic (CSL) has been introduced and shown to be decidable by Aziz, Sanwal, Singhal and Brayton in 1996. Their proof can be turned into an approximation algorithm with worse than exponential complexity. In 2000, Baier, Haverkort, Hermanns and Katoen presented an efficient polynomial-time approximation algorithm for the sublogic in which only binary until is allowed. In this paper, we propose such an efficient polynomial-time approximation algorithm for full CSL. The key to our method is the notion of stratified CTMCs with respect to the CSL property to be checked. On a stratified CTMC, the probability to satisfy a CSL path formula can be approximated by a transient analysis in polynomial time (using uniformization). We present a measure-preserving, linear-time and -space transformation of any CTMC into an equivalent, stratified one. This makes the present work the centerpiece of a broadly applicable full CSL model checker. Recently, the decision algorithm by Aziz et al. was shown to work only for stratified CTMCs. As an additional contribution, our measure-preserving transformation can be used to ensure the decidability for general CTMCs.Comment: 18 pages, preprint for LMCS. An extended abstract appeared in ICALP 201

    Model checking of continuous-time Markov chains against timed automata specifications

    Get PDF
    We study the verification of a finite continuous-time Markov chain (CTMC) C against a linear real-time specification given as a deterministic timed automaton (DTA) A with finite or Muller acceptance conditions. The central question that we address is: what is the probability of the set of paths of C that are accepted by A, i.e., the likelihood that C satisfies A? It is shown that under finite acceptance criteria this equals the reachability probability in a finite piecewise deterministic Markov process (PDP), whereas for Muller acceptance criteria it coincides with the reachability probability of terminal strongly connected components in such a PDP. Qualitative verification is shown to amount to a graph analysis of the PDP. Reachability probabilities in our PDPs are then characterized as the least solution of a system of Volterra integral equations of the second type and are shown to be approximated by the solution of a system of partial differential equations. For single-clock DTA, this integral equation system can be transformed into a system of linear equations where the coefficients are solutions of ordinary differential equations. As the coefficients are in fact transient probabilities in CTMCs, this result implies that standard algorithms for CTMC analysis suffice to verify single-clock DTA specifications
    corecore