150 research outputs found

    Photophysics of indole upon x-ray absorption

    Full text link
    A photofragmentation study of gas-phase indole (C8_8H7_7N) upon single-photon ionization at a photon energy of 420 eV is presented. Indole was primarily inner-shell ionized at its nitrogen and carbon 1s1s orbitals. Electrons and ions were measured in coincidence by means of velocity map imaging. The angular relationship between ionic fragments is discussed along with the possibility to use the angle-resolved coincidence detection to perform experiments on molecules that are strongly oriented in their recoil-frame. The coincident measurement of electrons and ions revealed fragmentation-pathway-dependent electron spectra, linking the structural fragmentation dynamics to different electronic excitations. Evidence for photoelectron-impact self-ionization was observed.Comment: 11 pages, 6 figure

    Characterization of Municipal, Construction and Demolition Wastes for Energy Production Through Gasification - A Case Study for a Portuguese Waste Management Company

    Get PDF
    Gasification of wastes is considered a promising alternative for energy generation due to its lower environmental impacts when compared with conventional landfilling and incineration. Valorisation of such wastes improves sustainability of resource management and of energy production. However, an appropriate characterisation of wastes in terms of physical and chemical properties is essential for the prediction of their behaviour during gasification, allowing to identify possible problems for the environment and installed equipment and also to define which materials present a greater energy potential. This study aimed to characterise 10 different fractions from municipal, construction and demolition wastes received in different fluxes by a Portuguese waste management company. These fractions included wood (44.83 wt%), plastic (22.15 wt%), paper/card (0.04 wt%), mixtures of paper and plastic (14.67 wt%) and sewage sludge (18.31 wt%). For this purpose, determination of density, proximate and ultimate analysis, higher heating value (HHV), thermogravimetric profiles and inorganic composition of ashes were performed for each fraction. Analysis revealed that plastics and their mixtures with paper/card possess the highest HHV’s (25–45 MJ/kg db), thus exhibiting a greater capacity for energy production. High levels of ashes found in dried sewage sludge (50 wt % db) indicate that a lot of by-product will be generated after gasification, possibly increasing the treatment costs. A gasification unit operating at 50 kg/h and admitting a mixture of all these wastes would generate 109.7 kW of total power, having capacity to receive more waste fluxes along the year.info:eu-repo/semantics/acceptedVersio

    Black and pink. Single lesion or double diagnosis?

    Get PDF
    Fibroepithelioma of Pinkus (FeP) is an uncommon skin lesion considered to be a rare variant of basal cell carcinoma (BCC), even though some researchers have argued for its classifica- tion as a trichoblastoma. FeP appears frequently as a solitary, flesh-colored, well-demarcated plaque, typically localized on the lumbosacral area of patients aged 40 to 60 years. It often develops in patients with a history of BCC, most commonly in wome

    IgE antibody repertoire in nasal secretions of children and adults with seasonal allergic rhinitis: a molecular analysis

    Get PDF
    Background: There is growing interest both in testing IgE in nasal secretions (NS) and in molecular diagnosis of seasonal allergic rhinitis (SAR). Yet, the reliability of nasal IgE detection with the newest molecular assays has never been assessed in a large cohort of pollen allergic patients. Objective: To investigate with microarray technology and compare the repertoires of specific IgE (sIgE) antibodies in NS and sera of a large population of children and adults with SAR. Methods: Nasal secretions were collected with an absorbent device (Merocel 2000®, Medtronic) and a minimal dilution procedure from 90 children and 71 adults with SAR. Total IgE (tIgE) (ImmunoCAP, Thermo Fisher Scientific (TFS)) and sIgE antibodies against 112 allergen molecules (ISAC-112, TFS) were measured in NS and serum. Results: Nasal sIgE was detectable in 68.3% of the patients. The detected nasal sIgE antibodies recognized airborne (88%), vegetable (10%), and animal food or other (<1%) allergen molecules. The prevalence and average levels of sIgE in NS and serum were highly interrelated at population level. A positive nasal sIgE antibody to a given molecule predicted the detection of the same antibody in the patient's serum with a specificity of 99.7% and a sensitivity of 40%. Conclusions: The concentration of sIgE is much lower in nasal secretions than in the serum. sIgE assays with very high analytical sensitivity and sampling methods with minimal dilution will be therefore needed to validate nasal secretions as alternative to serum in testing the sIgE repertoire

    Collective Autoionization in Multiply-Excited Systems: A novel ionization process observed in Helium Nanodroplets

    Get PDF
    Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes electronically-excited prior to plasma formation, with subsequent decay paths which have been scarcely investigated to date. Here, we show using helium nanodroplets as an example that these systems can decay by a new type of process, named collective autoionization. In addition, we show that this process is surprisingly efficient, leading to ion abundances much greater than that of direct single-photon ionization. This novel collective ionization process is expected to be important in many other complex systems, e.g. macromolecules and nanoparticles, exposed to high intensity radiation fields

    Real-time dynamics of the formation of hydrated electrons upon irradiation of water clusters with extreme ultraviolet light

    Get PDF
    Free electrons in a polar liquid can form a bound state via interaction with the molecular environment. This so-called hydrated electron state in water is of fundamental importance e.g.~in cellular biology or radiation chemistry. Hydrated electrons are highly reactive radicals that can either directly interact with DNA or enzymes, or form highly excited hydrogen (H∗) after being captured by protons. Here, we investigate the formation of the hydrated electron in real-time employing XUV femtosecond pulses from a free electron laser, in this way observing the initial steps of the hydration process. Using time-resolved photoelectron spectroscopy we find formation timescales in the low picosecond range and resolve the prominent dynamics of forming excited hydrogen states

    Heterogeneous validity of daily data on symptoms of seasonal allergic rhinitis recorded by patients using the e-diary AllergyMonitor®

    Get PDF
    Background: Patient-generated symptom and medication scores are essential for diagnostic and therapeutic decisions in seasonal allergic rhinitis (SAR). Previous studies have shown solid consistencies between different scores at population level in real-life data and trials. For clinicians, the evaluation of individual data quality over time is essential to decide whether to rely on these data in clinical decision-making. Objective: To analyze the consistency of different symptom (SS) and symptom medication scores (SMSs) at individual level in two study cohorts with different characteristics and explore individual patient trajectories over time. Methods: Within the pilot phase of the @IT.2020 project on diagnostic synergy of mobile health and molecular IgE assessment in patients with SAR, we analyzed data of 101 children and 93 adults with SAR and instructed them to record their symptoms and medication intake daily via the mobile app AllergyMonitor®. We then assessed the correlation between different SMS and a visual analogue scale (VAS) on the impact of allergy symptoms on daily life at population and individual level. Results: At population level, the Rhinoconjunctivitis total symptom score (RTSS) correlated better with VAS than the combined symptom and medication score (CSMS). At individual level, consistency among RTSS and VAS was highly heterogeneous and unrelated to disease severity or adherence to recording. Similar heterogeneity was observed for CSMS and VAS. Conclusions: The correlation of clinical information provided by different disease severity scores based on data collected via electronic diaries (e-diaries), is sufficient at population level, but broadly heterogeneous for individual patients. Consistency of the recorded data must be examined for each patient before remotely collected information is used for clinical decision making

    Evolution and ion kinetics of a XUV-induced nanoplasma in ammonia clusters

    Full text link
    High-intensity extreme ultraviolet (XUV) pulses from a free-electron laser can be used to create a nanoplasma in clusters. In Ref. [Michiels et al. PCCP, 2020; 22: 7828-7834] we investigated the formation of excited states in an XUV-induced nanoplasma in ammonia clusters. In the present article we expand our previous study with a detailed analysis of the nanoplasma evolution and ion kinetics. We use a time-delayed UV laser as probe to ionize excited states of H and H2+_2^+ in the XUV-induced plasma. Employing covariance mapping techniques, we show that the correlated emission of protons plays an important role in the plasma dynamics. The time-dependent kinetic energy of the ions created by the probe laser is measured, revealing the charge neutralization of the cluster happens on a sub-picosecond timescale. Furthermore, we observe ro-vibrationally excited molecular hydrogen ions H2+∗_2^{+*} being ejected from the clusters. We rationalize our data through a qualitative model of a finite-size non-thermal plasma

    Tracking the ultraviolet-induced photochemistry of thiophenone during and after ultrafast ring opening

    Get PDF
    Photoinduced isomerization reactions lie at the heart of many chemical processes in nature. The mechanisms of such reactions are determined by a delicate interplay of coupled electronic and nuclear dynamics occurring on the femtosecond scale, followed by the slower redistribution of energy into different vibrational degrees of freedom. Here we apply time-resolved photoelectron spectroscopy with a seeded extreme ultraviolet free-electron laser to trace the ultrafast ring opening of gas-phase thiophenone molecules following ultraviolet photoexcitation. When combined with ab initio electronic structure and molecular dynamics calculations of the excited- and ground-state molecules, the results provide insights into both the electronic and nuclear dynamics of this fundamental class of reactions. The initial ring opening and non-adiabatic coupling to the electronic ground state are shown to be driven by ballistic S–C bond extension and to be complete within 350 fs. Theory and experiment also enable visualization of the rich ground-state dynamics that involve the formation of, and interconversion between, ring-opened isomers and the cyclic structure, as well as fragmentation over much longer timescales
    • …
    corecore