251 research outputs found

    Restrictions on dilatonic brane-world models

    Get PDF
    We consider dilatonic brane-world models with a non-minimal coupling between a dilaton and usual matter on a brane. We demonstrate that variation of the fundamental constants on the brane due to such interaction leads to strong restrictions on parameters of models. In particular, the experimental bounds on variation of the fine structure constant rule out non-minimal dilatonic models with a Liouville-type coupling potential f(varphi) = exp (b varphi) where b is order of 1.Comment: MiKTeX2-LaTeX2e, 10 pages, minor changes, improved references, to appear in IJMP

    Assessment of the Life Cycle Environmental Impact of the Olive Oil Extraction Solid Wastes in the European Union

    Get PDF
    There is an increasing interest in developing sustainable systems in the European Union (EU) to recover and upgrade the solid wastes of the olive oil extraction process, i.e. wet husk. A Life Cycle Environmental Impact Assessment (LCIA) of wet husk has been carried out aiming at facilitating an appropriate Life Cycle Management of this biomass. Three scenarios have been considered, i.e. combustion for domestic heat, generation of electric power, and composting. The Environmental Product Declaration and the ReCiPe method were used for Life Cycle Impact Assessment. Domestic heating and power generation were the most important impact factors in damaging human health, ecosystems, and natural resources depletion. Composting was 2-4 orders of magnitude less impacting than domestic heat and power generation. Considering human health, the impact of climate change, human toxicity and particulate matter formation represented the main impact categories. Considering ecosystems, climate change and natural land transformation were the main impact categories. Within natural resources, fossil fuel depletion was impacted three orders more than metal depletion. Within domestic heating and power generation scenarios, storage of wet husk along with the extraction by organic solvent, and the waste treatment were the most impacting phases for global warming potential, ozone layer depletion, acidification and non renewable fossil resources depletion. The results obtained for the waste disposal have been comparatively assessed with respect to the environmental impact of the olive oil production chain

    Constraining the Variation of G by Cosmic Microwave Background Anisotropies

    Full text link
    We use the Cosmic Microwave Background Anisotropies (CMBA) power spectra to constrain the cosmological variation of gravitational constant G. It is found that the sensitivity of CMBA to the variation of G is enhanced when G is required to converge to its present value. The variations of G from the CMB decoupling epoch z ~ 1000 to the present time are modelled by a step function and a linear function of scale factor aa respectively, and the corresponding 95% confidence intervals for G/G_0 are [0.95, 1.05] and [0.89, 1.13], G_0 being the present value. The CMBA constraint is unique in the sense that it entails the range of redshift from z \approx 1000 to 0.Comment: 7 pages, 8 figures, discussion added, references adde

    Constraining a possible time-variation of the gravitational constant through "gravitochemical heating" of neutron stars

    Full text link
    A hypothetical time-variation of the gravitational constant GG would cause neutron star matter to depart from beta equilibrium, due to the changing hydrostatic equilibrium. This forces non-equilibrium beta processes to occur, which release energy that is invested partly in neutrino emission and partly in heating the stellar interior. Eventually, the star arrives at a stationary state in which the temperature remains nearly constant, as the forcing through the change of GG is balanced by the ongoing reactions. Comparing the surface temperature of the nearest millisecond pulsar, PSR J0437-4715, inferred from ultraviolet observations, with our predicted stationary temperature, we estimate two upper limits for this variation: (1) ∣G˙/G∣<2×10−10|\dot G/G| < 2 \times 10^{-10} yr−1^{-1}, if we allow direct Urca reactions operating in the neutron star core, and (2) ∣G˙/G∣<4×10−12|\dot G/G| < 4 \times 10^{-12} yr−1^{-1}, considering only modified Urca reactions. Both results are competitive with those obtained by other methods, with (2) being among the most restrictive.Comment: 4 pages, including 2 figures. Accepted for publication in Phys. Rev. Lett. Revised version includes minor changes in the wording, and more substantial changes in the last 2 paragraphs (Discussion and Conclusions). Equations, figures, and results are unchange

    Cosmological Constraints on Newton's Constant

    Full text link
    We present cosmological constraints on deviations of Newton's constant at large scales, analyzing latest cosmic microwave background (CMB) anisotropies and primordial abundances of light elements synthesized by big bang nucleosynthesis (BBN). BBN limits the possible deviation at typical scales of BBN epoch, say at 10^8 \sim 10^12m, to lie between -5% and +1% of the experimental value, and CMB restricts the deviation at larger scales 10^2 \sim 10^9pc to be between -26% and +66% at the 2\sigma confidence level. The cosmological constraints are compared with the astronomical one from the evolution of isochrone of globular clusters.Comment: 4 pages, 5 figure

    The Height of Chromospheric Loops in an Emerging Flux Region

    Full text link
    Context. The chromospheric layer observable with the He I 10830 {\AA} triplet is strongly warped. The analysis of the magnetic morphology of this layer therefore requires a reliable technique to determine the height at which the He I absorption takes place. Aims. The He I absorption signature connecting two pores of opposite polarity in an emerging flux region is investigated. This signature is suggestive of a loop system connecting the two pores. We aim to show that limits can be set on the height of this chromospheric loop system. Methods. The increasing anisotropy in the illumination of a thin, magnetic structure intensifies the linear polarization signal observed in the He I triplet with height. This signal is altered by the Hanle effect. We apply an inversion technique incorporating the joint action of the Hanle and Zeeman effects, with the absorption layer height being one of the free parameters. Results. The observed linear polarization signal can be explained only if the loop apex is higher than \approx5 Mm. Best agreement with the observations is achieved for a height of 6.3 Mm. Conclusions. The strength of the linear polarization signal in the loop apex is inconsistent with the assumption of a He I absorption layer at a constant height level. The determined height supports the earlier conclusion that dark He 10830 {\AA} filaments in emerging flux regions trace emerging loops.Comment: 7 pages, 4 figure

    Screening of Nuclear Reactions in the Sun and Solar Neutrinos

    Full text link
    We quantitatively determine the effect and the uncertainty on solar neutrino production arising from the screening process. We present predictions for the solar neutrino fluxes and signals obtained with different screening models available in the literature and by using our stellar evolution code. We explain these numerical results in terms of simple laws relating the screening factors with the neutrino fluxes. Futhermore we explore a wider range of models for screening, obtained from the Mitler model by introducing and varying two phenomenological parameters, taking into account effects not included in the Mitler prescription. Screening implies, with respect to a no-screening case, a central temperat reduction of 0.5%, a 2% (8%) increase of Beryllium (Boron)-neutrino flux and a 2% (12%) increase of the Gallium (Chlorine) signal. We also find that uncertainties due to the screening effect ar at the level of 1% for the predicted Beryllium-neutrino flux and Gallium signal, not exceeding 3% for the Boron-neutrino flux and the Chlorine signal.Comment: postscript file 11 pages + 4 figures compressed and uuencoded we have replaced the previous paper with a uuencoded file (the text is the same) for any problem please write to [email protected]

    Fusion rate enhancement due to energy spread of colliding nuclei

    Full text link
    Experimental results for sub-barrier nuclear fusion reactions show cross section enhancements with respect to bare nuclei which are generally larger than those expected according to electron screening calculations. We point out that energy spread of target or projectile nuclei is a mechanism which generally provides fusion enhancement. We present a general formula for calculating the enhancement factor and we provide quantitative estimate for effects due to thermal motion, vibrations inside atomic, molecular or crystal system, and due to finite beam energy width. All these effects are marginal at the energies which are presently measurable, however they have to be considered in future experiments at still lower energies. This study allows to exclude several effects as possible explanation of the observed anomalous fusion enhancements, which remain a mistery.Comment: 17 pages with 3 ps figure included. Revtex styl

    Possible Tomography of the Sun's Magnetic Field with Solar Neutrinos

    Get PDF
    The data from solar neutrino experiments together with standard solar model predictions are used in order to derive the possible profile of the magnetic field inside the Sun, assuming the existence of a sizeable neutrino magnetic moment and the resonant spin flavour mechanism. The procedure is based on the relationship between resonance location and the energy dependent neutrino suppression, so that a large neutrino suppression at a given energy is taken to be connected to a large magnetic field in a given region of the Sun. In this way it is found that the solar field must undergo a very sharp increase by a factor of at least 6 - 7 over a distance no longer than 7 - 10% of the solar radius, decreasing gradually towards the surface. The range in which this sharp increase occurs is likely to be the bottom of the convective zone. There are also indications in favour of the downward slope being stronger at the start and more moderate on approaching the solar surface. Typical ranges for the magnetic moment are from a few times 10^{-13}\mu_B to its laboratory upper bounds while the mass square difference between neutrino flavours is of order (0.6-1.9) x 10^{-8}eV^2.Comment: Several minor corrections performed, sunspot anticorrelation discussed, references added, 29 pages including 8 figures in PostScrip

    Recent Advances in Chromospheric and Coronal Polarization Diagnostics

    Full text link
    I review some recent advances in methods to diagnose polarized radiation with which we may hope to explore the magnetism of the solar chromosphere and corona. These methods are based on the remarkable signatures that the radiatively induced quantum coherences produce in the emergent spectral line polarization and on the joint action of the Hanle and Zeeman effects. Some applications to spicules, prominences, active region filaments, emerging flux regions and the quiet chromosphere are discussed.Comment: Review paper to appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S. S. Hasan and R. J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, 200
    • 

    corecore