830 research outputs found

    The upgrade of GEO600

    Get PDF
    The German / British gravitational wave detector GEO 600 is in the process of being upgraded. The upgrading process of GEO 600, called GEO-HF, will concentrate on the improvement of the sensitivity for high frequency signals and the demonstration of advanced technologies. In the years 2009 to 2011 the detector will undergo a series of upgrade steps, which are described in this paper.Comment: 9 pages, Amaldi 8 conference contributio

    Parametric instabilities and their control in advanced interferometer GW detectors

    Full text link
    A detailed simulation of Advanced LIGO test mass optical cavities shows that parametric instabilities will excite acoustic modes in the test masses in the frequency range 28-35 kHz and 64-72 kHz. Using nominal Advanced LIGO optical cavity parameters with fused silica test masses, parametric instability excites 7 acoustic modes in each test mass, with parametric gain R up to 7. For the alternative sapphire test masses only 1 acoustic mode is excited in each test mass with R ~ 2. Fine tuning of the test mass radii of curvature cause the instabilities to sweep through various modes with R as high as ~2000. Sapphire test mass cavities can be tuned to completely eliminate instabilities using thermal g-factor tuning with negligible degradation of the noise performance. In the case of fused silica test mass, instabilities can be minimized but not eliminated.Comment: 5 pages, 4 figure

    Cost-benefit analysis for commissioning decisions in GEO600

    Get PDF
    Gravitational wave interferometers are complex instruments, requiring years of commissioning to achieve the required sensitivities for the detection of gravitational waves, of order 10^-21 in dimensionless detector strain, in the tens of Hz to several kHz frequency band. Investigations carried out by the GEO600 detector characterisation group have shown that detector characterisation techniques are useful when planning for commissioning work. At the time of writing, GEO600 is the only large scale laser interferometer currently in operation running with a high duty factor, 70%, limited chiefly by the time spent commissioning the detector. The number of observable gravitational wave sources scales as the product of the volume of space to which the detector is sensitive and the observation time, so the goal of commissioning is to improve the detector sensitivity with the least possible detector down time. We demonstrate a method for increasing the number of sources observable by such a detector, by assessing the severity of non-astrophysical noise contaminations to efficiently guide commissioning. This method will be particularly useful in the early stages and during the initial science runs of the aLIGO and adVirgo detectors, as they are brought up to design performance.Comment: 17 pages, 17 figures, 2 table

    DC-readout of a signal-recycled gravitational wave detector

    Full text link
    All first-generation large-scale gravitational wave detectors are operated at the dark fringe and use a heterodyne readout employing radio frequency (RF) modulation-demodulation techniques. However, the experience in the currently running interferometers reveals several problems connected with a heterodyne readout, of which phase noise of the RF modulation is the most serious one. A homodyne detection scheme (DC-readout), using the highly stabilized and filtered carrier light as local oscillator for the readout, is considered to be a favourable alternative. Recently a DC-readout scheme was implemented on the GEO 600 detector. We describe the results of first measurements and give a comparison of the performance achieved with homodyne and heterodyne readout. The implications of the combined use of DC-readout and signal-recycling are considered.Comment: 11 page

    GEO 600 and the GEO-HF upgrade program: successes and challenges

    Get PDF
    The German-British laser-interferometric gravitational wave detector GEO 600 is in its 14th year of operation since its first lock in 2001. After GEO 600 participated in science runs with other first-generation detectors, a program known as GEO-HF began in 2009. The goal was to improve the detector sensitivity at high frequencies, around 1 kHz and above, with technologically advanced yet minimally invasive upgrades. Simultaneously, the detector would record science quality data in between commissioning activities. As of early 2014, all of the planned upgrades have been carried out and sensitivity improvements of up to a factor of four at the high-frequency end of the observation band have been achieved. Besides science data collection, an experimental program is ongoing with the goal to further improve the sensitivity and evaluate future detector technologies. We summarize the results of the GEO-HF program to date and discuss its successes and challenges

    Control and automatic alignment of the output mode cleaner of GEO 600

    Get PDF
    The implementation of a mode cleaner at the output port of the GEO 600 gravitational wave detector will be part of the upcoming transition from GEO 600 to GEO-HF. Part of the transition will be the move from a heterodyne readout to a DC readout scheme. DC readout performance will be limited by higher order optical modes and control sidebands present at the output port. For optimum performance of DC readout an output mode cleaner (OMC) will clean the output beam of these contributions. Inclusion of an OMC will introduce new noise sources whose magnitudes needed to be estimated and for which new control systems will be needed. In this article we set requirements on the performance of these control systems and investigate the simulated performance of different designs.Science and Technology Facilities Council (STFC)BMBFMax Planck Society (MPG)State of Lower Saxony in GermanyEuropean Gravitational Observatory (EGO)DFG/SFB/Transregio

    Commissioning of the tuned DC readout at GEO 600

    Get PDF
    Recent experimental results from GEO600 operating with a DC readout and a tuned signal recycling cavity are reported. Compared to the S5/Astrowatch setup, two major changes in the configuration have been implemented: the control readout to keep the interferometer on the dark fringe is changed from heterodyne to homodyne readout and the signal recycling cavity is shifted from a 550 Hz detuning to a 0 Hz detuning (also called tuned). As preliminary experiments showed, the tuned DC readout sensitivity is similar to the heterodyne one. To take advantage of the new DC readout detection scheme, an Output Mode Cleaner (OMC) has to be installed. The design, building and testing of the GEO OMC, which consists of a 4 mirrors monolithic ring cavity, will also be presented in this article.Science and Technology Facilities Council (STFC)BMBFMax Planck Society (MPG)State of Lower Saxony in GermanyEuropean Gravitational Observatory (EGO)DFG/SFB/Transregio

    The upgrade of GEO 600

    Get PDF
    The German/ British gravitational wave detector GEO 600 is in the process of being upgraded. The upgrading process of GEO 600, called GEO-HF, will concentrate on the improvement of the sensitivity for high frequency signals and the demonstration of advanced technologies. In the years 2009 to 2011 the detector will undergo a series of upgrade steps, which are described in this paper.Science and Technology Facilities Council (STFC)BMBFMax Planck Society (MPG)State of Lower SaxonyDFG/SFB/Transregio
    • …
    corecore