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Abstract.
Recent experimental results from GEO600 operating with a DC readout and a tuned signal

recycling cavity are reported. Compared to the S5/Astrowatch setup, two major changes in the
configuration have been implemented: the control readout to keep the interferometer on the
dark fringe is changed from heterodyne to homodyne readout and the signal recycling cavity
is shifted from a 550 Hz detuning to a 0 Hz detuning (also called tuned). As preliminary
experiments showed, the tuned DC readout sensitivity is similar to the heterodyne one. To take
advantage of the new DC readout detection scheme, an Output Mode Cleaner (OMC) has to
be installed. The design, building and testing of the GEO OMC, which consists of a 4 mirrors
monolithic ring cavity, will also be presented in this article.

1. Introduction
The transition between GEO [1] and GEO-HF [2] will be achieved after the completion of sev-
eral major upgrades. Among those upgrades, the error signal used to keep the interferometer
on the dark fringe will no longer be derived from a heterodyne readout but from a homodyne
detection scheme called DC readout. The advantages of DC readout over heterodyne readout
are numerous [3] but the full benefits of this technique can only be achieved with the presence
of an Output Mode Cleaner (OMC). At the same time as changing the readout technique, the
GEO signal recycling cavity resonance will be shifted from 550 Hz (detuned case) to 0 Hz (tuned
case). This shift of the signal recycling mirror lowers the contribution of most technical noises
to the sensitivity [4] and it allows a frequency independent injection of broadband squeezed light
in order to lower the shot noise limited sensitivity [5].

Experimentally, the advantage of DC readout has first been reported by the 40m prototype
interferometer at Caltech [6]. Regarding GEO, the motivation and technicality of tuned DC
readout have also already been published [3] and will not be reminded here.

This paper is part of a series of articles about the recent development of GEO 600. Addi-
tional details regarding the interferometer can be found in the following papers. The meaning
of Astrowatch as well as a comparison of the GEO noise budget for heterodyne and homodyne
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readout is reported by Grote [7]. The longitudinal control and the autoalignment of the output
mode cleaner is described in Prijatelj et al. [8]. Finally for the long term vision and to under-
stand the role of tuned DC readout in GEO-HF, the reader can refer to Lück et al. [9].

This article, about the preparation of tuned DC readout for GEO-HF, is divided into two
parts. In the first part, the experiments and the preliminary sensitivity of GEO in a tuned DC
readout configuration are reported. The second part is about the design and the building of the
output mode cleaner which has been tested in the Albert Einstein Institute in Hannover before
being installed at the GEO site.

2. Experimental results of tuned DC readout
2.1. Background
From November 2007 to July 2009, GEO participated in Astrowatch while the LIGO (4k)
and Virgo interferometers were being upgraded. GEO achieved its Astrowatch mission with a
duty cycle of more than 85%. This high duty cycle was possible due to restrictions placed on
commissioning. Only reversible and limited hardware changes were permitted and were carried
out during the day in such a way as to allow the detector to operate in low noise condition over
the nights and weekends. Even with these constraints, we managed to stably lock on tuned DC
readout to futher investigate this configuration.

Due to Astrowatch, we were not able to test the complete DC readout setup planned for
GEO-HF. In particular, we did not have an OMC installed, so the higher order optical modes
and the modulation sideband fields were still present at the dark port with large amplitudes
(contributing a few tens of milliwatts to the detected power). As a result, for the carrier field
from the dark fringe offset to dominate the dark port, two actions had to be taken. First, the
modulation index of the Michelson sidebands was reduced, reducing the power of the sidebands
by a factor 50. Secondly, a large dark fringe offset of 20 pm was implemented.

2.2. Lock acquisition
It would have taken too long to develop a new locking procedure to directly lock to tuned
signal recycling and DC readout, so it was naturally decided to first lock the interferometer
using detuned heterodyne readout. Thus, the same robust locking script implemented for the
previous S5/Astrowatch configuration is also used for DC readout.

After the interferometer is locked with a detuned signal recycling and a low laser input power,
the metamorphosis to DC readout can begin. First, control of the interferometer’s longitudinal
degree of freedom is shifted from low noise photodiodes to photodiodes with large dynamical
which are detecting attenuated beams. Second, the signal recycling mirror is (abruptly) shifted
from the detuned position to the tuned one [4], the typical jump involved moving the signal
recycling mirror by 1.4 nm over 8 millisecond. Third, the RF modulation index is reduced and
the gains of the different control loops are adjusted to compensate. Fourth, a dark fringe offset is
introduced that, together with the reduced RF sideband power, ensures the fundamental mode
dominates the dark port power. Fifth, the dark fringe control is shifted from the heterodyne
to the DC readout error signal. And, finally, the input laser power is increased to the nominal
power.”

Presently, during normal weather conditions, the success rate of going from detuned
heterodyne to tuned DC readout is around 70%. The most critical steps of the locking procedure
are the controlled jump of the signal recycling mirror from detuned to tuned position and the
switching on of the DC control with the high power photodiode.

8th Edoardo Amaldi Conference on Gravitational Waves IOP Publishing
Journal of Physics: Conference Series 228 (2010) 012013 doi:10.1088/1742-6596/228/1/012013

2



10
2

10
3

10
−22

10
−21

10
−20

10
−19

10
−18

Sensitivity comparison

Frequency [Hz]

S
tr

ai
n 

[1
/Ö

H
z]

 

 

Tuned DC readout
Heterodyne SR detuned 550 Hz

Figure 1. Sensitivity comparison between the preliminary tuned DC readout configuration and
the heterodyne readout used during S5 and Astrowatch.

2.3. The DC readout sensitivity
The sensitivity achieved for tuned DC readout is presented in figure 1. Compared to the
heterodyne sensitivity which has been used since the beginning of GEO and so has been heavily
optimised and tested, the sensitivity of tuned DC readout is promising. We obtained a better
sensitivity in tuned DC readout compared to heterodyne readout in the frequency range from
100 Hz to 300 Hz and similar sensitivity at high frequencies above 2 kHz, where the sensitivity
is limited by the shot noise.

For frequencies below 100 Hz, where we are limited by the Michelson autoalignment feedback
noise, DC readout yields a slightly worse sensitivity. That is a direct consequence of the reduction
of the sideband amplitude since these sidebands are also used to derive the alignment error
signal from the differential wavefront sensing scheme. The decrease in the sideband power is
compensated by an increase in the autoalignment gain resulting in higher noise at low frequency,
due to the amplification of the electronic noise.

In the frequency range between 300 Hz and 2 kHz, the preliminary tuned DC sensitivity
is worse compared to the heterodyne readout. That is not fully understood but recently this
noise has been greatly decreased (not shown here but presented in [7]) with better amplitude
stabilization of the Schnupp modulation sidebands compatible with the reduced modulation
index used and by placing the detection photodiode inside a closed vacuum tank (but still in
air).

2.4. Noise budget
The noise budget of tuned DC readout is presented in figure 2. As mentioned earlier, at low
frequencies (below 100 Hz) we are limited by the autoalignment feedback noise. In the middle
frequency range, the dominant known noise source is the laser amplitude noise. As in the case of
heterodyne readout, the noise budget does not explain fully the measured sensitivity since a gap
is remaining between the sum of the projected noise and the sensitivity. The large coupling of
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Figure 2. Noise budget of the tuned DC readout configuration.

laser amplitude noise is a direct consequence of the dark fringe offset. And at high frequencies,
the sensitivity is shot noise limited.

Compared to detuned heterodyne readout, the tuned DC readout scheme lowers the coupling
of several technical noises to the sensitivity as shown in figure 3. The transfer functions presented
here can simply simply be understood as the sensitivity curve divided by the noise spectra. They
are measured by injecting a dominating white noise into the noise source of interest. The absolute
magnitude of the transfer functions is arbitrary since it depends how the noise is detected,
whiten and then recorded. However the noise detection process is common to heterodyne and
DC readout, so a relative comparison of the 2 configurations is still meaningful.

The noise transfer functions of the signal recycling longitudinal actuator, of the laser
frequency noise, and of the sidebands oscillator amplitude noise (not shown) are reduced by
a factor up to 10. The sidebands oscillator phase noise transfer function has roughly the same
level but with different features. Only the coupling of the laser amplitude noise appears higher
in the new configuration.

In DC readout, the laser laser amplitude noise couples stronger to the sensitivity than in het-
erodyne readout. To be explained, it must first be reminded that the calibrated strain sensitivity
curve is derived from the error signal used to keep the Michelson interferometer on the dark
fringe. For the DC readout configuration, this error signal is simply the power spectra of the
light detected at the dark port and so is also a direct measurement of the input laser amplitude
[10] (minus the low pass filtering effect of the power recycling cavity). Moreover, the use of a
dark fringe offset also reduce the common mode rejection from the Michelson interferometer,
increasing slightly the level of the laser amplitude noise at the dark port.

For GEO-HF, we expect an improvement in the sensitivity compared to the one presented
here since after the installation of the OMC, a smaller dark fringe offset will be implemented
and the sidebands will be restored to their optimal amplitudes while not reaching the detection
photodiode.
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Figure 3. Comparison of the noise transfer functions to h between detuned heterodyne (blue
curves) and tuned DC readout (red curves). The peaks in the noise transfer function for tuned
DC readout at 785 Hz and 1365 Hz are due to the resonance in the signal recycling cavity of
respectively, the signal recycling control sidebands and the Michelson control sidebands. Such
peaks will be eliminated after the addition of the output mode cleaner which prevents the control
sidebands to reach the detection photodiode.

3. The GEO600 output mode cleaner
During the installation of GEO-HF, the input laser will be upgraded and up to 10 times more
light will circulate in the interferometer compared to the present GEO setup. Due to the presence
of higher order modes and of the sidebands fields kept for the autoalignement system, more than
400 mW of total power will be available for detection at the dark port. To handle that amount of
power, multiple photodiodes will have to be used and a large dark fringe offset will be required.
To avoid this solution, an Output Mode Cleaner (OMC) will be installed, reducing the incident
power on the detection photodiode by a factor 20.

The Output Mode Cleaner (OMC) is a filter cavity transmitting the DC field in the
fundamental mode to the photodiode and attenuating the higher order modes and the
modulation sidebands. The details of the OMC can be found in the following sections.

3.1. Requirements
The OMC must satisfy two main requirements:

(i) The power of the RF sidebands at 15 MHz must be reduced by at least a factor 100 in
transmission. This requirement tells us how selective the mode cleaner must be, so it gives
us an upper limit on the mode cleaner bandwidth. Practically, for a light round trip length
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Figure 4. Optical setup of the OMC
with the dimension in millimeter.
The beam leaving the signal recycling
cavity is coming from the left.

Figure 5. Isometric view of the OMC. All parts are
mode of fused silica expect for the PZT.

of 66 cm, this requirement is satisfied for a finesse above 150.
(ii) The power of the higher order optical modes must be reduced by at least a factor 100

in transmission. This requirement sets a constraint on the finesse of the cavity and on
the g-factor. With a finesse of 150, the requirement is met for a g-factor of 0.3 or 0.7,
for suppression of the higher order modes up to the 6th order and for an even number of
mirrors in the cavity.

3.2. Optical and mechanical design
For the optical parameters of the OMC, we chose the minimal acceptable finesse i.e. 150. The
preferred g factor is 0.735 which allows a larger beam size on the mirror than a g factor of 0.3.

The design of the OMC must also take into account that the optics will be installed on an
isolated platform where the weight of the components must be carefully distributed. For this
reason, the OMC is composed by 4 mirrors equally distributed on either side of the incoming
beam as shown in the left part of figure 4. A 4-mirror configuration presents also two additional
advantages: first the vertical and horizontal resonances are degenerate [11], so the number of
optical mode resonances is halved compared to a mode cleaner with an odd number of mirrors.
Second, the mirror which is not used for the input or output port and not glued to the opaque
PZT can be partially transmissive, so a low power beam can exit the OMC and be used for
diagnostic without the introduction of an additional beam splitter.

A piezo actuator (PZT) is glued to one of the curved mirror to control the length of the
OMC. The PZT is composed of low voltage multi layer stack and will be used to longitudinally
lock the OMC to the incoming fundamental mode. The control and the autoalignment as well
as the length noise requirements of the OMC are detailed in the paper by M. Prijatelj et al. [8].
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For thermal stability and low thermal noise, it was decided that all the parts of the OMC will
be made of fused silica, except for the PZT. Instead of using a spacer, the optics are mounted
on a rectangular cuboid glass breadboard. The input and output mirrors which are flat, have a
rectangular shape, whereas the two curve mirrors are cylindrical.

The low frequency thermal drift of the optical path is further minimized since more than 70%
of the thermal expansion of the glass breadboard is compensated by the thermal expansion of
the PZT for homogenous temperature change.

The glass breadboard is relatively thick, 38 mm. This dimension was optimized to minimize
the nuisance of the mechanical modes which can modulate the optical path length of the OMC.
In particular, the first mechanical mode of the OMC breadboard is chosen to be at 1.3 kHz
where the sensitivity of the interferometer is already slightly degraded by the second harmonic
of the violin modes of the suspension fibers.

The substrate for the optics is made of highly homogenous, low inclusion synthetic fused
silica (Schott 7980-0-A), the optical mounts and mirror bases are made with a slightly lower
quality fused silica (Schott 7980-3-C) and finally the glass breadboard is made of industry-grade
fused silica (Schott Lithosil QT). The optics are superpolished and IBS coated. The other parts
are simply polished. In the specification, special attention was drawn to the perpendicularity of
the different surfaces to ensure a tilt free assembly.

3.3. Building and testing
The different parts have been glued with the epoxy Optocast 3553-UTF-LV-HM. This UV-cured
epoxy was particularly suitable since a very thin layer can be applied and it has very low residual
outgassing. The mirrors were first positioned to their mounts using mechanical templates. The
use of templates was inspired from the experience developed with the bonding of LISA pathfinder
glass breadboard [12]. Since the epoxy is only cured after UV light is applied, all the parts can
be accurately positioned without hurry. To position the mirrors on the glass breadboard, two
steps were required. First a template was used to glue 3 out of the 4 OMC mirrors. Then to
glue the last mirror, a carefully aligned laser was sent through the cavity and the last mirror
was positioned manually to close the cavity.

The OMC is controlled via the LIGO Control and Data System (CDS) designed for Advanced
LIGO. The error signal to keep the OMC on resonance is derived by dithering the PZT at 20 kHz
and then demodulating the transmitted light in phase. Stable locks were achieved, in the AEI
clean room with the feedback applied to the input laser. This setup is different from what is
planned for GEO-HF, since for GEO-HF the feedback will be applied to the PZT itself [8].
Nevertheless, the test gave us some valuable insight and experience about the OMC and the
LIGO CDS.

By scanning the cavity over one free spectral range, two essential parameters of the OMC
cavity can be derived. First, the finesse of the cavity, derived from the measurement of the cavity
linewidth was found to be 147, and second, the g-factor, derived from the frequency spacing of
the higher order modes was measured to be 0.731. Both the finesse and the g factor are within
2% of the design value.

4. Conclusion and outlook
A DC readout control scheme has been implemented for the GEO600 interferometer. The
preliminary sensitivity achieved without an output mode cleaner is comparable to heterodyne
readout in the middle frequency range (100 Hz - 300 Hz) and at high frequency (≥ 2 kHz). In
parallel to this work, an output mode cleaner has been build and tested off site. The output
mode cleaner actuator is controlled by the LIGO CDS system, showing the path for further
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digital implementation in GEO.

As of September 2009, the plan is to first have a short commissioning of DC readout without
the OMC, then inject squeezed vacuum from the dark port and finally around mid-autumn,
install the OMC in vacuum in front of the DC readout photodiode. Only then, intensive
commissioning and optimization of tuned DC readout for GEO-HF will be endeavored.
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