5,492 research outputs found

    Increasing entanglement through engineered disorder in the random Ising chain

    Full text link
    The ground state entanglement entropy between block of sites in the random Ising chain is studied by means of the Von Neumann entropy. We show that in presence of strong correlations between the disordered couplings and local magnetic fields the entanglement increases and becomes larger than in the ordered case. The different behavior with respect to the uncorrelated disordered model is due to the drastic change of the ground state properties. The same result holds also for the random 3-state quantum Potts model.Comment: 4 pages, published version, a few typos correcte

    Density Matrix Renormalization Group for Dummies

    Get PDF
    We describe the Density Matrix Renormalization Group algorithms for time dependent and time independent Hamiltonians. This paper is a brief but comprehensive introduction to the subject for anyone willing to enter in the field or write the program source code from scratch.Comment: 29 pages, 9 figures. Published version. An open source version of the code can be found at http://qti.sns.it/dmrg/phome.htm

    Entanglement properties of spin models in triangular lattices

    Full text link
    The different quantum phases appearing in strongly correlated systems as well as their transitions are closely related to the entanglement shared between their constituents. In 1D systems, it is well established that the entanglement spectrum is linked to the symmetries that protect the different quantum phases. This relation extends even further at the phase transitions where a direct link associates the entanglement spectrum to the conformal field theory describing the former. For 2D systems much less is known. The lattice geometry becomes a crucial aspect to consider when studying entanglement and phase transitions. Here, we analyze the entanglement properties of triangular spin lattice models by considering also concepts borrowed from quantum information theory such as geometric entanglement.Comment: 19 pages, 8 figure

    Coherent scattering of a Multiphoton Quantum Superposition by a Mirror-BEC

    Full text link
    We present the proposition of an experiment in which the multiphoton quantum superposition consisting of N= 10^5 particles generated by a quantum-injected optical parametric amplifier (QI-OPA), seeded by a single-photon belonging to an EPR entangled pair, is made to interact with a Mirror-BEC shaped as a Bragg interference structure. The overall process will realize a Macroscopic Quantum Superposition (MQS) involving a microscopic single-photon state of polarization entangled with the coherent macroscopic transfer of momentum to the BEC structure, acting in space-like separated distant places.Comment: 4 pages, 4 figure

    A case study of spin-11 Heisenberg model in a triangular lattice

    Full text link
    We study the spin-11 model in a triangular lattice in presence of a uniaxial anisotropy field using a Cluster Mean-Field approach (CMF). The interplay between antiferromagnetic exchange, lattice geometry and anisotropy forces Gutzwiller mean-field approaches to fail in a certain region of the phase diagram. There, the CMF yields two supersolid (SS) phases compatible with those present in the spin-1/21/2 XXZ model onto which the spin-11 system maps. Between these two SS phases, the three-sublattice order is broken and the results of the CMF depend heavily on the geometry and size of the cluster. We discuss the possible presence of a spin liquid in this region.Comment: 7 pages, 4 figures, RevTeX 4. The abstract and conclusions have been modified and the manuscript has been extende

    Complex phenotype in an Italian family with a novel mutation in SPG3A.

    Get PDF
    Mutations in the SPG3A gene represent a significant cause of autosomal dominant hereditary spastic paraplegia with early onset and pure phenotype. We describe an Italian family manifesting a complex phenotype, characterized by cerebellar involvement in the proband and amyotrophic lateral sclerosis-like syndrome in her father, in association with a new mutation in SPG3A. Our findings further widen the notion of clinical heterogeneity in SPG3A mutations

    Dense coding with multipartite quantum states

    Full text link
    We consider generalisations of the dense coding protocol with an arbitrary number of senders and either one or two receivers, sharing a multiparty quantum state, and using a noiseless channel. For the case of a single receiver, the capacity of such information transfer is found exactly. It is shown that the capacity is not enhanced by allowing the senders to perform joint operations. We provide a nontrivial upper bound on the capacity in the case of two receivers. We also give a classification of the set of all multiparty states in terms of their usefulness for dense coding. We provide examples for each of these classes, and discuss some of their properties.Comment: 14 pages, 1 figure, RevTeX

    Entanglement at the quantum phase transition in a harmonic lattice

    Full text link
    The entanglement properties of the phase transition in a two dimensional harmonic lattice, similar to the one observed in recent ion trap experiments, are discussed both, for finite number of particles and thermodynamical limit. We show that for the ground state at the critical value of the trapping potential two entanglement measures, the negativity between two neighbouring sites and the block entropy for blocks of size 1, 2 and 3, change abruptly. Entanglement thus indicates quantum phase transitions in general; not only in the finite dimensional case considered in [Phys. Rev. Lett. {\bf 93}, 250404 (2004)]. Finally, we consider the thermal state and compare its exact entanglement with a temperature entanglement witness introduced in [Phys. Rev. A {\bf 77} 062102 (2008)].Comment: extended published versio
    corecore