1,322 research outputs found

    Electronic transport through nuclear-spin-polarization-induced quantum wire

    Full text link
    Electron transport in a new low-dimensional structure - the nuclear spin polarization induced quantum wire (NSPI QW) is theoretically studied. In the proposed system the local nuclear spin polarization creates the effective hyperfine field which confines the electrons with the spins opposite to the hyperfine field to the regions of maximal nuclear spin polarization. The influence of the nuclear spin relaxation and diffusion on the electron energy spectrum and on the conductance of the quantum wire is calculated and the experimental feasibility is discussed.Comment: 5 pages, 4 figure

    Massive Spin Collective Mode in Quantum Hall Ferromagnet

    Full text link
    It is shown that the collective spin rotation of a single Skyrmion in quantum Hall ferromagnet can be regarded as precession of the entire spin texture in the external magnetic field, with an effective moment of inertia which becomes infinite in the zero g-factor limit. This low-lying spin excitation may dramatically enhance the nuclear spin relaxation rate via the hyperfine interaction in the quantum well slightly away from filling factor equal one.Comment: 4 page

    Is the magnetic field necessary for the Aharonov-Bohm effect in mesoscopics?

    Full text link
    A new class of topological mesoscopic phenomena in absence of external magnetic field (meso-nucleo-spinics)is predicted, which is based on combined action of the nonequilibrium nuclear spin population and charge carriers spin-orbit interaction . As an example, we show that Aharonov-Bohm like oscillations of the persistent current in GaAs/AlGaAs based mesoscopic rings may exist, in the absence of the external magnetic field, provided that a topologically nontrivial strongly nonequilibrium nuclear spin population is created. This phenomenon is due to the breaking, via the spin-orbit coupling, of the clock wise - anti clock wise symmetry of the charge carriers momentum, which results in the oscillatory in time persistent current.Comment: 14 pages, Late

    Nucleus-mediated spin-flip transitions in GaAs quantum dots

    Full text link
    Spin-flip rates in GaAs quantum dots can be quite slow, thus opening up the possibilities to manipulate spin states in the dots. We present here estimations of inelastic spin-flip rates mediated by hyperfine interaction with nuclei. Under general assumptions the nucleus mediated rate is proportional to the phonon relaxation rate for the corresponding non-spin-flip transitions. The rate can be accelerated in the vicinity of a singlet-triplet excited states crossing. The small proportionality coefficient depends inversely on the number of nuclei in the quantum dot. We compare our results with known mechanisms of spin-flip in GaAsGaAs quantum dot.Comment: RevTex 4 pages, 1 figure, submitted to Phys. Rev.

    Nuclear Spin Qubit Dephasing Time in the Integer Quantum Hall Effect Regime

    Full text link
    We report the first theoretical estimate of the nuclear-spin dephasing time T_2 owing to the spin interaction with the two-dimensional electron gas, when the latter is in the integer quantum Hall state, in a two-dimensional heterojunction or quantum well at low temperature and in large applied magnetic field. We establish that the leading mechanism of dephasing is due to the impurity potentials that influence the dynamics of the spin via virtual magnetic spin-exciton scattering. Implications of our results for implementation of nuclear spins as quantum bits (qubits) for quantum computing are discussed.Comment: 19 pages in plain Te

    Electronic Transport Through a Nuclear-Spin-Polarization-Induced Quantum Wire

    Get PDF
    Electron transport in a low-dimensional structure—the nuclear-spin-polarization-induced quantum wire is theoretically studied. In the proposed system the local nuclear-spin polarization creates the effective hyperfine field that confines the electrons with the spins opposite to the hyperfine field to the regions of maximal nuclear-spin polarization. The influence of the nuclear-spin relaxation and diffusion on the electron energy spectrum and on the conductance of the quantum wire is calculated and the experimental feasibility is discussed

    Combined effect of Zeeman splitting and spin-orbit interaction on the Josephson current in a S-2DEG-S structure

    Full text link
    We analyze new spin effects in current-carrying state of superconductor-2D electron gas-superconductor (S-2DEG-S) device with spin-polarized nuclei in 2DEG region. The hyperfine interaction of 2D electrons with nuclear spins, described by the effective magnetic field B, produces Zeeman splitting of Andreev levels without orbital effects, that leads to the interference pattern of supercurrent oscillations over B. The spin-orbit effects in 2DEG cause strongly anisotropic dependence of the Josephson current on the direction of B, which may be used as a probe for the spin-orbit interaction intensity. Under certain conditions, the system reveals the properties of pi-junction.Comment: 4 pages, 4 figure

    Hyperfine-mediated transitions between a Zeeman split doublet in GaAs quantum dots: The role of the internal field

    Full text link
    We consider the hyperfine-mediated transition rate between Zeeman split spin states of the lowest orbital level in a GaAs quantum dot. We separate the hyperfine Hamiltonian into a part which is diagonal in the orbital states and another one which mixes different orbitals. The diagonal part gives rise to an effective (internal) magnetic field which, in addition to an external magnetic field, determines the Zeeman splitting. Spin-flip transitions in the dots are induced by the orbital mixing part accompanied by an emission of a phonon. We evaluate the rate for different regimes of applied magnetic field and temperature. The rates we find are bigger that the spin-orbit related rates provided the external magnetic field is sufficiently low.Comment: 8 pages, 3 figure

    Dynamic nuclear polarization at the edge of a two-dimensional electron gas

    Full text link
    We have used gated GaAs/AlGaAs heterostructures to explore nonlinear transport between spin-resolved Landau level (LL) edge states over a submicron region of two-dimensional electron gas (2DEG). The current I flowing from one edge state to the other as a function of the voltage V between them shows diode-like behavior---a rapid increase in I above a well-defined threshold V_t under forward bias, and a slower increase in I under reverse bias. In these measurements, a pronounced influence of a current-induced nuclear spin polarization on the spin splitting is observed, and supported by a series of NMR experiments. We conclude that the hyperfine interaction plays an important role in determining the electronic properties at the edge of a 2DEG.Comment: 8 pages RevTeX, 7 figures (GIF); submitted to Phys. Rev.
    • …
    corecore