14,020 research outputs found

    Magnetization in electron- and Mn- doped SrTiO3

    Full text link
    Mn-doped SrTiO_3.0, when synthesized free of impurities, is a paramagnetic insulator with interesting dielectric properties. Since delocalized charge carriers are known to promote ferromagnetism in a large number of systems via diverse mechanisms, we have looked for the possibility of any intrinsic, spontaneous magnetization by simultaneous doping of Mn ions and electrons into SrTiO_3 via oxygen vacancies, thereby forming SrTi_(1-x)Mn_xO_(3-d), to the extent of making the doped system metallic. We find an absence of any enhancement of the magnetization in the metallic sample when compared with a similarly prepared Mn doped, however, insulating sample. Our results, thus, are not in agreement with a recent observation of a weak ferromagnetism in metallic Mn doped SrTiO_3 system.Comment: 10 pages and 4 figure

    Flux jumps, Second Magnetization Peak anomaly and the Peak Effect phenomenon in single crystals of YNi2B2CYNi_2B_2C and LuNi2B2CLuNi_2B_2C

    Full text link
    We present magnetization measurements in single crystals of the tetragonal YNi2B2CYNi_2B_2C compound, which exhibit the phenomenon of peak effect as well as the second magnetization peak anomaly for H >> 0.5T (H || c). At the lower field (50mT << H << 200mT), we have observed the presence of flux jumps, which seem to relate to a structural change in the local symmetry of the flux line lattice (a first order re-orientation transition across a local field in some parts of the sample, in the range of 100mT to 150mT). These flux jumps are also observed in a single crystal of LuNi2B2CLuNi_2B_2C for H || c in the field region from 2 mT to 25 mT, which are compatible with the occurrence of a re-orientation transition at a lower field in a cleaner crystal of this compound, as compared to those of YNi2B2CYNi_2B_2C. Vortex phase diagrams drawn for H || c in LuNi2B2CLuNi_2B_2C and YNi2B2CYNi_2B_2C show that the ordered elastic glass phase spans a larger part of (H, T) space in the former as compared to latter, thereby, reaffirming the difference in the relative purity of the two samples.Comment: 11 pages, 14 figure

    Amorphization of Vortex Matter and Reentrant Peak Effect in YBa2_2Cu3_3O7δ_{7-\delta}

    Full text link
    The peak effect (PE) has been observed in a twinned crystal of YBa2_2Cu3_3O7δ_{7-\delta} for H\parallelc in the low field range, close to the zero field superconducting transition temperature (Tc_c(0)) . A sharp depinning transition succeeds the peak temperature Tp_p of the PE. The PE phenomenon broadens and its internal structure smoothens out as the field is increased or decreased beyond the interval between 250 Oe and 1000 Oe. Moreover, the PE could not be observed above 10 kOe and below 20 Oe. The locus of the Tp_p(H) values shows a reentrant characteristic with a nose like feature located at Tp_p(H)/Tc_c(0)\approx0.99 and H\approx100 Oe (where the FLL constant a0_0\approxpenetration depth λ\lambda). The upper part of the PE curve (0.5 kOe<<H<<10 kOe) can be fitted to a melting scenario with the Lindemann number cL_L\approx0.25. The vortex phase diagram near Tc_c(0) determined from the characteristic features of the PE in YBa2_2Cu3_3O7δ_{7-\delta}(H\parallelc) bears close resemblance to that in the 2H-NbSe2_2 system, in which a reentrant PE had been observed earlier.Comment: 15 pages and 7 figure

    Topological Aspect of high-TcT_c Superconductivity, Fractional Quantum Hall Effect and Berry Phase

    Full text link
    We have analysed here the equivalence of RVB states with ν=1/2\nu=1/2 FQH states in terms of the Berry Phase which is associated with the chiral anomaly in 3+1 dimensions. It is observed that the 3-dimensional spinons and holons are characterised by the non-Abelian Berry phase and these reduce to 1/2 fractional statistics when the motion is confined to the equatorial planes. The topological mechanism of superconductivity is analogous to the topological aspects of fractional quantum Hall effect with ν=1/2\nu=1/2.Comment: 12 pages latex fil

    Vortex Phase Diagram of weakly pinned YBa2_2Cu3_3O7δ_{7-\delta} for H \parallel c

    Full text link
    Vortex phase diagram in a weakly pinned crystal of YBCO for H \parallel c is reviewed in the light of a recent elucidation of the process of `inverse melting' in a Bismuth cuprate system and the imaging of an interface between the ordered and the disordered regions across the peak effect in 2H-NbSe2_2. In the given YBCO crystal, a clear distinction can be made between the second magnetization peak (SMP) and the peak effect (PE) between 65 K and 75 K. The field region between the peak fields of the SMP (Hsmpm^m_{smp}) and the onset fields of the PE (Hpeon^{on}_{pe})is not only continuously connected to the Bragg glass phase at lower fields but it is also sandwiched between the higher temperature vortex liquid phase and the lower temperature vortex glass phase. Thus, an ordered vortex state between Hsmpm^m_{smp} and Hpeon^{on}_{pe} can get transformed to the (disordered) vortex liquid state on heating as well as to the (disordered) vortex glass state on cooling, a situation analogous to the thermal melting and the inverse melting phenomenon seen in a Bismuth cuprate.Comment: Presented in IWCC-200

    Autonomous and controlled motivational regulations for multiple health related behaviors: between- and within-participants analyses

    Get PDF
    Self-determination theory has been applied to the prediction of a number of health-related behaviors with self-determined or autonomous forms of motivation generally more effective in predicting health behavior than non-self-determined or controlled forms. Research has been confined to examining the motivational predictors in single health behaviors rather than comparing effects across multiple behaviors. The present study addressed this gap in the literature by testing the relative contribution of autonomous and controlling motivation to the prediction of a large number of health-related behaviors, and examining individual differences in self-determined motivation as a moderator of the effects of autonomous and controlling motivation on health behavior. Participants were undergraduate students (N = 140) who completed measures of autonomous and controlled motivational regulations and behavioral intention for 20 health-related behaviors at an initial occasion with follow-up behavioral measures taken four weeks later. Path analysis was used to test a process model for each behavior in which motivational regulations predicted behavior mediated by intentions. Some minor idiosyncratic findings aside, between-participants analyses revealed significant effects for autonomous motivational regulations on intentions and behavior across the 20 behaviors. Effects for controlled motivation on intentions and behavior were relatively modest by comparison. Intentions mediated the effect of autonomous motivation on behavior. Within-participants analyses were used to segregate the sample into individuals who based their intentions on autonomous motivation (autonomy-oriented) and controlled motivation (control-oriented). Replicating the between-participants path analyses for the process model in the autonomy- and control-oriented samples did not alter the relative effects of the motivational orientations on intention and behavior. Results provide evidence for consistent effects of autonomous motivation on intentions and behavior across multiple health-related behaviors with little evidence of moderation by individual differences. Findings have implications for the generalizability of proposed effects in self-determination theory and intentions as a mediator of distal motivational factors on health-related behavior
    corecore