24,149 research outputs found
Development and application of an atmospheric turbulence model for use in flight simulators in flight simulators
The influence of simulated turbulence on aircraft handling qualities was investigated. Pilot opinion of the handling qualities of a light general aviation aircraft were evaluated in a motion-base simulator using a simulated turbulence environment. A realistic representation of turbulence disturbances is described in terms of rms intensity and scale length and their random variations with time. The time histories generated by the proposed turbulence models showed characteristics which appear to be more similar to real turbulence than the frequently-used Gaussian turbulence model. In addition, the proposed turbulence models can flexibly accommodate changes in atmospheric conditions and be easily implemented in flight simulator studies. Six turbulence time histories, including the conventional Gaussian model, were used in an IFR-tracking task. The realism of each of the turbulence models and the handling qualities of the simulated airplane were evaluated. Analysis of pilot opinions shows that at approximately the same rms intensities of turbulence, the handling quality ratings transit from the satisfactory level, for the simple Gaussian model, to an unacceptable level for more realistic and compositely structured turbulence models
Effects of simulated turbulence on aircraft handling qualities
The influence of simulated turbulence on aircraft handling qualities is presented. Pilot opinions of the handling qualities of a light general aviation aircraft were evaluated in a motion-base simulator using a simulated turbulence environment. A realistic representation of turbulence disturbances is described in terms of rms intensity and scale length and their random variations with time. The time histories generated by the proposed turbulence models showed characteristics which are more similar to real turbulence than the frequently-used Gaussian turbulence model. The proposed turbulence models flexibly accommodate changes in atmospheric conditions and are easily implemented in flight simulator studies
Quantum evaporation of a naked singularity
We investigate here quantum effects in gravitational collapse of a scalar
field model which classically leads to a naked singularity. We show that
non-perturbative semi-classical modifications near the singularity, based on
loop quantum gravity, give rise to a strong outward flux of energy. This leads
to the dissolution of the collapsing cloud before the singularity can form.
Quantum gravitational effects thus censor naked singularities by avoiding their
formation. Further, quantum gravity induced mass flux has a distinct feature
which may lead to a novel observable signature in astrophysical bursts.Comment: 4 pages, 2 figures. Minor changes to match published version in
Physical Review Letter
Gravitational collapse of an isentropic perfect fluid with a linear equation of state
We investigate here the gravitational collapse end states for a spherically
symmetric perfect fluid with an equation of state . It is shown that
given a regular initial data in terms of the density and pressure profiles at
the initial epoch from which the collapse develops, the black hole or naked
singularity outcomes depend on the choice of rest of the free functions
available, such as the velocities of the collapsing shells, and the dynamical
evolutions as allowed by Einstein equations. This clarifies the role that
equation of state and initial data play towards determining the final fate of
gravitational collapse.Comment: 7 Pages, Revtex4, To appear in Classical and Quantum Gravit
Orthogonal Ramanujan Sums, its properties and Applications in Multiresolution Analysis
Signal processing community has recently shown interest in Ramanujan sums
which was defined by S.Ramanujan in 1918. In this paper we have proposed
Orthog- onal Ramanujan Sums (ORS) based on Ramanujan sums. In this paper we
present two novel application of ORS. Firstly a new representation of a finite
length signal is given using ORS which is defined as Orthogonal Ramanujan
Periodic Transform.Secondly ORS has been applied to multiresolution analysis
and it is shown that Haar transform is a spe- cial case
The Final Fate of Spherical Inhomogeneous Dust Collapse
We examine the role of the initial density and velocity distribution in the
gravitational collapse of a spherical inhomogeneous dust cloud. Such a collapse
is described by the Tolman-Bondi metric which has two free functions: the
`mass-function' and the `energy function', which are determined by the initial
density and velocity profile of the cloud. The collapse can end in a black-hole
or a naked singularity, depending on the initial parameters characterizing
these profiles. In the marginally bound case, we find that the collapse ends in
a naked singularity if the leading non-vanishing derivative of the density at
the center is either the first one or the second one. If the first two
derivatives are zero, and the third derivative non-zero, the singularity could
either be naked or covered, depending on a quantity determined by the third
derivative and the central density. If the first three derivatives are zero,
the collapse ends in a black hole. In particular, the classic result of
Oppenheimer and Snyder, that homogeneous dust collapse leads to a black hole,
is recovered as a special case. Analogous results are found when the cloud is
not marginally bound, and also for the case of a cloud starting from rest. We
also show how the strength of the naked singularity depends on the density and
velocity distribution. Our analysis generalizes and simplifies the earlier work
of Christodoulou and Newman [4,5] by dropping the assumption of evenness of
density functions. It turns out that relaxing this assumption allows for a
smooth transition from the naked singularity phase to the black-hole phase, and
also allows for the occurrence of strong curvature naked singularities.Comment: 23 pages; Plain Tex; TIFR-TAP preprin
Role of initial data in spherical collapse
We bring out here the role of initial data in causing the black hole and
naked singularity phases as the final end state of a continual gravitational
collapse. The collapse of a type I general matter field is considered, which
includes most of the known physical forms of matter. It is shown that given the
distribution of the density and pressure profiles at the initial surface from
which the collapse evolves, there is a freedom in choosing rest of the free
functions, such as the velocities of the collapsing shells, so that the end
state could be either a black hole or a naked singularity depending on this
choice. It is thus seen that it is the initial data that determines the end
state of spherical collapse in terms of these outcomes, and we get a good
picture of how these phases come about.Comment: 5 pages, Revtex4, Revised version, To appear in Physical Review
Modified SPLICE and its Extension to Non-Stereo Data for Noise Robust Speech Recognition
In this paper, a modification to the training process of the popular SPLICE
algorithm has been proposed for noise robust speech recognition. The
modification is based on feature correlations, and enables this stereo-based
algorithm to improve the performance in all noise conditions, especially in
unseen cases. Further, the modified framework is extended to work for
non-stereo datasets where clean and noisy training utterances, but not stereo
counterparts, are required. Finally, an MLLR-based computationally efficient
run-time noise adaptation method in SPLICE framework has been proposed. The
modified SPLICE shows 8.6% absolute improvement over SPLICE in Test C of
Aurora-2 database, and 2.93% overall. Non-stereo method shows 10.37% and 6.93%
absolute improvements over Aurora-2 and Aurora-4 baseline models respectively.
Run-time adaptation shows 9.89% absolute improvement in modified framework as
compared to SPLICE for Test C, and 4.96% overall w.r.t. standard MLLR
adaptation on HMMs.Comment: Submitted to Automatic Speech Recognition and Understanding (ASRU)
2013 Worksho
- …