53,611 research outputs found

    Many-body localization and mobility edge in a disordered Heisenberg spin ladder

    Full text link
    We examine the interplay of interaction and disorder for a Heisenberg spin ladder system with random fields. We identify many-body localized states based on the entanglement entropy scaling, where delocalized and localized states have volume and area laws, respectively. We first establish the quantum phase transition at a critical random field strength hc8.5±0.5h_c \sim 8.5\pm 0.5, where all energy eigenstates are localized beyond that value. Interestingly, the entanglement entropy and fluctuation of the bipartite magnetization show distinct probability distributions which characterize different quantum phases. Furthermore, we show that for weaker hh, energy eigenstates with higher energy density are delocalized while states at lower energy density are localized. This defines a mobility edge and a mobility gap separating these two phases. By following the evolution of low energy eigenstates, we observe that the mobility gap grows with increasing the random field strength, which drives the system to the phase of the full many-body localization with increasing disorder strength.Comment: 6 pages, 4 figure

    A formal definition and a new security mechanism of physical unclonable functions

    Full text link
    The characteristic novelty of what is generally meant by a "physical unclonable function" (PUF) is precisely defined, in order to supply a firm basis for security evaluations and the proposal of new security mechanisms. A PUF is defined as a hardware device which implements a physical function with an output value that changes with its argument. A PUF can be clonable, but a secure PUF must be unclonable. This proposed meaning of a PUF is cleanly delineated from the closely related concepts of "conventional unclonable function", "physically obfuscated key", "random-number generator", "controlled PUF" and "strong PUF". The structure of a systematic security evaluation of a PUF enabled by the proposed formal definition is outlined. Practically all current and novel physical (but not conventional) unclonable physical functions are PUFs by our definition. Thereby the proposed definition captures the existing intuition about what is a PUF and remains flexible enough to encompass further research. In a second part we quantitatively characterize two classes of PUF security mechanisms, the standard one, based on a minimum secret read-out time, and a novel one, based on challenge-dependent erasure of stored information. The new mechanism is shown to allow in principle the construction of a "quantum-PUF", that is absolutely secure while not requiring the storage of an exponentially large secret. The construction of a PUF that is mathematically and physically unclonable in principle does not contradict the laws of physics.Comment: 13 pages, 1 figure, Conference Proceedings MMB & DFT 2012, Kaiserslautern, German

    Power and cross-power spectrum analysis by hybrid computers

    Get PDF
    Power and cross power spectrum analysis by hybrid computer

    The scaling behavior of the insulator to plateau transition in topological band model

    Full text link
    The scaling behavior of the quantum phase transition from an insulator to a quantum Hall plateau state has often been examined within systems realizing Landau levels. We study the topological transition in energy band models with nonzero Chern number, which have the same topological property as a Landau level. We find that the topological band generally realizes the same universality class as the integer quantum Hall system in magnetic field for strong enough disorder scattering. Furthermore, the symmetry of the transition characterized by the relations: σxy(E)=1σxy(E)\sigma_{xy}(E)=1-\sigma_{xy}(-E) for the Hall conductance and σxx(E)=σxx(E)\sigma_{xx}(E)=\sigma_{xx}(-E) for the longitudinal conductance is observed near the transition region. We also establish that the finite temperature dependence of the Hall conductance is determined by the inelastic scattering relaxation time, while the localization exponent ν\nu remains unchanged by such scattering.Comment: 7 pages and 7 figures, minor revisio

    Optical studies of carrier and phonon dynamics in Ga_{1-x}Mn_{x}As

    Full text link
    We present a time-resolved optical study of the dynamics of carriers and phonons in Ga_{1-x}Mn_{x}As layers for a series of Mn and hole concentrations. While band filling is the dominant effect in transient optical absorption in low-temperature-grown (LT) GaAs, band gap renormalization effects become important with increasing Mn concentration in Ga_{1-x}Mn_{x}As, as inferred from the sign of the absorption change. We also report direct observation on lattice vibrations in Ga1-xMnxAs layers via reflective electro-optic sampling technique. The data show increasingly fast dephasing of LO phonon oscillations for samples with increasing Mn and hole concentration, which can be understood in term of phonon scattering by the holes.Comment: 13 pages, 3 figures replaced Fig.1 after finding a mistake in previous versio
    corecore