44,648 research outputs found

    Power and cross-power spectrum analysis by hybrid computers

    Get PDF
    Power and cross power spectrum analysis by hybrid computer

    Boron-oxygen defect imaging in p-type Czochralski silicon

    Get PDF
    In this work, we demonstrate an accurate method for determining the effective boron-oxygen (BO) related defect density on Czochralski-grown silicon wafers using photoluminescence imaging. Furthermore, by combining a recently developed dopant density imaging technique and microscopic Fourier transform infrared spectroscopy measurements of the local interstitial oxygen concentration [Oi ], the BO-related defect density, [Oi ], and the boron dopant density from the same wafer were determined, all with a spatial resolution of 160 μm. The results clearly confirm the established dependencies of the BO-related defect density on [Oi ] and the boron dopant density and demonstrate a powerful technique for studying this important defect.This work was supported by the Australian Research Council (ARC) Future Fellowships program and the Australian Renewable Energy Agency (ARENA) fellowships program

    Diversity and Adaptation in Large Population Games

    Full text link
    We consider a version of large population games whose players compete for resources using strategies with adaptable preferences. The system efficiency is measured by the variance of the decisions. In the regime where the system can be plagued by the maladaptive behavior of the players, we find that diversity among the players improves the system efficiency, though it slows the convergence to the steady state. Diversity causes a mild spread of resources at the transient state, but reduces the uneven distribution of resources in the steady state.Comment: 8 pages, 3 figure

    Free Form Lensing Implications for the Collision of Dark Matter and Gas in the Frontier Fields Cluster MACSJ0416.1-2403

    Get PDF
    We present a free form mass reconstruction of the massive lensing cluster MACSJ0416.1-2403 using the latest Hubble Frontier Fields data. Our model independent method finds that the extended lensing pattern is generated by two elongated, closely projected clusters of similar mass. Our lens model identifies new lensed images with which we improve the accuracy of the dark matter distribution. We find that the bimodal mass distribution is nearly coincident with the bimodal X-ray emission, but with the two dark matter peaks lying closer together than the centroids of the X-ray emisison. We show this can be achieved if the collision has occurred close to the plane and such that the cores are deflected around each other. The projected mass profiles of both clusters are well constrained because of the many interior lensed images, leading to surprisingly flat mass profiles of both components in the region 15-100 kpc. We discuss the extent to which this may be generated by tidal forces in our dynamical model which are large during an encounter of this type as the cores "graze" each other. The relative velocity between the two cores is estimated to be about 1200 km/s and mostly along the line of sight so that our model is consistent with the relative redshift difference between the two cD galaxies (dz = 0.04).Comment: 22 pages, 18 figures, 2 table

    A formal definition and a new security mechanism of physical unclonable functions

    Full text link
    The characteristic novelty of what is generally meant by a "physical unclonable function" (PUF) is precisely defined, in order to supply a firm basis for security evaluations and the proposal of new security mechanisms. A PUF is defined as a hardware device which implements a physical function with an output value that changes with its argument. A PUF can be clonable, but a secure PUF must be unclonable. This proposed meaning of a PUF is cleanly delineated from the closely related concepts of "conventional unclonable function", "physically obfuscated key", "random-number generator", "controlled PUF" and "strong PUF". The structure of a systematic security evaluation of a PUF enabled by the proposed formal definition is outlined. Practically all current and novel physical (but not conventional) unclonable physical functions are PUFs by our definition. Thereby the proposed definition captures the existing intuition about what is a PUF and remains flexible enough to encompass further research. In a second part we quantitatively characterize two classes of PUF security mechanisms, the standard one, based on a minimum secret read-out time, and a novel one, based on challenge-dependent erasure of stored information. The new mechanism is shown to allow in principle the construction of a "quantum-PUF", that is absolutely secure while not requiring the storage of an exponentially large secret. The construction of a PUF that is mathematically and physically unclonable in principle does not contradict the laws of physics.Comment: 13 pages, 1 figure, Conference Proceedings MMB & DFT 2012, Kaiserslautern, German
    • …
    corecore