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POWER AND CROSS-POWER SPECTRUM ANALYSIS 

BY HYBRID COMPUTERS 

By Raymond S. L i m  and W i l l i a m  D .  Cameron 
Ames Research Center 

SUMMARY 

This paper describes a method f o r  analyzing power and cross-power spec t ra  
from 0 . 1  Hz t o  20 kHz with general  purpose hybrid computers. The method i s  
v a l i d  f o r  analyzing continuous and d i s c r e t e  spec t r a  of per iodic ,  aperiodic, 
complex, and s t a t iona ry  random s igna l s .  A spectrum i s  analyzed e n t i r e l y  on 
the  analog computer by a pseudo band-pass riiter I r i e t l i G d .  The bzri6widt.h and 
t h e  averaging time a re  varied t o  s u i t  t he  computation requirement of each 
spectrum. The d i g i t a l  computer i s  used f o r  automatic con t ro l  of t h e  analog 
computer, f o r  da t a  acquis i t ion ,  and f o r  compensation of magnetic tape s t a t i c  
skew. The d e f i n i t i o n  of power and cross-power spec t ra ,  and the  v a l i d i t y  of 
various methods of ana lys i s  are comprehensively reviewed. 

INTRODUCTION 

Power and cross-power spec t ra  are analyzed by f i l t e r i n g ,  phase sh i f t i ng ,  
squaring, and averaging. During the  p a s t  20 years, many methods have been 
devised f o r  i nves t iga t ing  problems i n  subjects ranging from aeronautics t o  
zoology and many spec ia l  analyzers have been b u i l t .  Reference 1 presents  a 
survey of spectrum analyzers. The f l e x i b i l i t y  of such analyzers i s  l imi ted  i n  
frequency range, f i l t e r  bandwidth, s i g n a l  skew e r r o r  compensation, averaging 
time, and t h e  number of channels t h a t  can be analxzed simultaneously. 
Recently, d i g i t a l  c o n p t e r s  h v e  been used f o r  spectrum analys is  ( i n  a very 
l imi ted  range) .  

The expanding technology of aeronautical  and biomedical engineering 
r equ i r e s  a more sophis t ica ted  method f o r  spectrum analys is .  This requirement 
prompted t h e  development of hybrid computers f o r  spectrum analys is .  The pur- 
pose of t h i s  paper i s  (1) t o  present a hybrid-computer technique f o r  analyzing 
cont imous  and d i s c r e t e  spec t r a  of periodic,  aperiodic,  complex, and s t a t i o n -  
a r y  random s igna l s  from 0.1 Hz t o  20 kHz, (2) t o  c l a r i f y  well-established 
theo r i e s  t h a t  describe random data,  and (3) t o  c l a r i f y  mechanization methods 
f o r  power and cross-power spectrum analyses. 

Ex i s t ing  hybrid computers, with a few add i t iona l  s p e c i a l  instruments, can 
be programmed t o  form a high q u a l i t y  spectrum analyzer. 
u s e f u l  f o r  spectrum analys is  because they have the  speed and f l e x i b i l i t y  of an 
analog computer, t h e  dynamic range and accuracy of a d i g i t a l  computer, and the  
automatic output of r e s u l t s  f o r  documentation and p l o t t i n g .  

Hybrid computers are 



A t  Ames Research Center, a hybrid computing system i s  used t o  compute 
The data,  recorded on 

b 

power and cross-power spec t ra  of a l l  types of da ta .  
analog magnetic tape,  have a frequency range from 0.01 Hz t o  20 kHz, and may 
or may not be s t a t iona ry  throughout t h e  e n t i r e  da ta  record.  
data record ranges from 50 msec t o  60 sec with a dynamic range t o  100 dB. 
Three channels of da t a  can be  analyzed simultaneously by the  analog computer. 
The d i g i t a l  computer automatically cont ro ls  the  analog computer, performs the  
da ta  acquis i t ion,  and compensates f o r  t he  s t a t i c  skew error of  the magnetic 
tape. 
be t r ea t ed  as s t a t iona ry  random data  i f  t he  e n t i r e  record length i s  analyzed. 

The length  of  t h e  

It should be noted t h a t  any random da ta  recorded on magnetic tape can 

NOTATION 

T 

w 
0 

cospectrum 

quadspectruin 

autocorrelat ion funct ion 

cross  -cor re la t ion  funct ion 

averaging t i m e  

Fourier  transform of x ( t )  

x ( t )  passed through a band-pass f i l t e r  with bandwidth 

x,(t) delayed by 90' 

t i m e  average of x ( t )  

ensemble average of x( t )  

b andw i d t  h 

power s p e c t r a l  dens i ty  of xl( t )  

power s p e c t r a l  dens i ty  of x 2 ( t )  

power s p e c t r a l  dens i ty  of x ( t )  

cutoff frequency of  low-pass f i l t e r  

l o c a l  oscl i l la tor  frequency 

Ai) 
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ANA.LOG SYMBOLS 

IC 1 

-Pin a t  IC 

STORE at  Op 

P i n ,  Pin, , K(w) = 100 at dc 
P i n ,  -p ' K(w) 

I P in, 

amplif ier  

i n t eg ra to r  

t rack/s tore  amplif ier  

mu l t ip l i e r  

potentiometer 

band-pass f i l t e r  

low-pass f i l t e r  

average c i r c u i t  



MATHEMATICAL THEORY b 

Defini t ion of Power Spectrum 

There are a t  least  two ways t o  ca lcu la te  t he  power spectrum of s t a t iona ry  
(1) by d i r e c t  ca l cu la t ion  and (2)  by transforming the  autocorre-  random data:  

l a t i o n  funct ion.  By these methods, three bas i c  mathematical de f in i t i ons  f o r  
the  power spectrum are general ly  derived, only two of which are v a l i d  f o r  
random data .  @ l l ( w )  be defined as the  power s p e c t r a l  densi ty  (psd) ;  
x ( t ) ,  a s t a t iona ry  random s igna l ;  and 
analyzed. The three de f in i t i ons  of psd are then: 

Let 
T, the  i n t e r v a l  of t he  da t a  t o  be 

1. From d i r e c t  ca lcu la t ion ,  

2 

2. From d i r e c t  ca lcu la t ion .  

3. From transformation of t h e  au tocorre la t ion  funct ion,  

= l i m  
&+O 

T+* 

where 

hT x&( t)  d t  

Equations (3)  are mathematically c o r r e c t  and are exce l l en t  + f i n i t i o n s  
f o r  mechanizing on e i t h e r  d i g i t a l  o r  analog computers. For d i g i t a l  computation, 
equation (3b) i s  general ly  used, while f o r  analog computation, equation (3c)  
i s  general ly  preferred.  Equation (3a) i s  mathematically r e l a t e d  t o  t h e  cor re-  
l a t i o n  analysis  of random data .  
ca l l ed  Wiener's theorem f o r  au tocorre la t ion ,  and it can be found i n  refer-  
ence 2. The der ivat ion of equation (3c) from (3a) i s  r e l a t i v e l y  

h 

The proof f o r  equat ion (3a) i s  sometimes 



straightforward, bu t  since t h i s  der iva t ion  i s  not o f t en  found i n  published 
l i t e r a t u r e ,  it i s  developed i n  appendix A. 
t o  ob ta in  the  dens i ty  spectrum as follows: 

Equation (3c) can be implemented 

1. x ( t )  i s  passed through a band-pass f i l t e r  with bandwidth & t o  
ob ta in  .A,( t )  , 

2. xA,(t) i s  squared through a mul t ip l ie r  t o  obta in  x&( t ) ,  

3. f i n a l l y ,  x&(t) i s  averaged t o  obta in  xz,(t) .  

Equations (3) are applicable t o  s t a t iona ry  random s igna l s  as w e l l  as per iodic  
and nonperiodic s igna l s .  Equation (3c) i s  an estimate of equation (3a) .  

Reference 3 (Aseltine) shows t h a t  equation (2)  i s  co r rec t  f o r  x ( t )  . 
(The w a v y  bar denotes Lhe ensemble average.) 
p r a c t i c a l  use i n  spectrum analys is .  

' T h i s  equaLioii has l i t t l e  

The first de f in i t i on ,  equation (l), has been shown t o  be mathematically 
inva l id  f o r  a l l  c l a s ses  of random s igna l s  ( r e f .  3, 4, 5, o r  6'1. 

Defin i t ion  of Cross-Power Spectrum 

Cross-power spectrum analys is  ob ta ins  the  amplitude and phase-spectrum 
information between two independent random s igna ls ,  x l ( t )  and x z ( t ) .  
e l e c t r i c a l  engineering poin t  of view, a cross-power spectrum analyzer i s  a 
phase meter for measuring the  phase and amplitude r e l a t ionsh ip  between two 
complex or random s igna l s .  The cross-power spectrum i s  a vector quant i ty ,  o r  
a complex func t ion .  The r e a l  p a r t  i s  ca l led  the  cospectrum and the  imaginary 
p a r t ,  t he  quadspectrum. 

From the  

The cross-power spectrum funct ion  O=(w) can be defined as the  Fourier 
transformation of t h e  c ross -cor re la t ion  function i n  a manner similar t o  def in-  
ing t h e  power spectrum as 

Mathematically, t h i s  i s  t h e  only known cor rec t  de f in i t i on  f o r  random s igna l s .  
The d e f i n i t i o n  of t h e  c r o s s - p o ~ ~ r  s s c t m -  f lux t ion  from d i r e c t  ca l cu la t ion  as 

d t  xl(t)eJwt d t  r' x2(t)e-jWt 1 r T  
@ 1 2 ( w )  = l i m  ;;; 

i s  inco r rec t  when x l ( t )  and x 2 ( t )  a r e  random s igna l s  ( f o r  the  reason given i n  
t h e  previous sec t ion  f o r  power spectrum). However, i f  x l ( t )  and x 2 ( t )  a re  
pe r iod ic  func t ions ,  Papoulis ( r e f .  7) shows t h a t  equation (6) i s  co r rec t .  

5 



Equation (5 )  can be defined i n  terms of t h e  cospectrum and t h e  
quadspectrum as 

where 

and 

b 

T+aJ 

m 'I' 
= l i m  & x lb ( t )xzb ( t )d t  
&-0 

I n  t h e  above equations,  C 1 2 ( w )  i s  t he  cospectrum, Q12(w) i s  t h e  quadspectrum, 
R12(7) i s  the  c ross -cor re la t ion  funct ion,  x 2 ( t )  passed through a 
band-pass f i l t e r  with bandwidth nW, and x2 &! (t)  s h i f t e d  90'. 
(Equations (8b) and (9b) are derived i n  

Basic Method of Power Spectrum Analysis 

Figure 1.- Analog method of power spectrum 
ana lys i s .  

Figure 2. - Analog tnc thod or CI'OC: -power 
:,pclc L r u m  analy:; i :: . 

The analog method of computing 
power spec t ra  i s  well-known. A s  i nd i -  
ca ted  by equations ( 3 ) ,  (8b) ,  and (9b), 
the  b a s i c  method of computing the  power 
and cross-power spec t r a  i s  by band-pass 
f i l t e r i n g ,  phase sh i f t i ng ,  squaring, 
and averaging the  da t a  ( f i g s  . 1 and 2, 
respec t ive ly)  . 

Actually,  t he  methods i n  f igures1 
and 2 cannot be reasonably mechanized 
because it i s  d i f f i c u l t  t o  design 
high-frequency narrow band-pass f il- 
te rs  (Ad of l Hz a t  10 kHz),  band- 
pass f i l t e r s  t h a t  can automatical ly  
s e l e c t  t h e  bandwidth and t h e  center  
f requencies  independently, and two 
band-pass f i l t e r s  wi th  an accura te ly  

6 



matched phase for cross -spectrum analys is .  Consequently, the  bas i c  analog 
'method i s  not generally used. 

times ca l l ed  tracking f i l t e r )  i s  mechanized by the  heterodyne p r inc ip l e .  
because of t h i s  f i l t e r i n g  technique, t he  method i s  v a l i d  only for analyzing 
da ta  with a s u f f i c i e n t l y  long record. It i s  inaccurate f o r  analyzing shor t  
records of a t r a n s i e n t  nature (such as impact research  or heartbeat d a t a ) ,  
unless t h e  da ta  a re  made per iodic .  
discussions.  ) 
and squaring) and 90' phase-shift  networks with the  required bandwidth a re  
r ead i ly  ava i lab le .  

I n  i t s  place,  a pseudo band-pass f i l t e r  (some- 
But 

(This w i l l  be c l a r i f i e d  i n  subsequent 
I n  the  present technology, analog mul t ip l i e r s  ( f o r  multiplying 

TYPES OF RANDOM SIGNAL TO BE ANALYZED 

The types of  random data  t.0 be analyzed, $3- thc t~rl-s-iqu.~s described i n  
t h i s  repor t ,  can be c l a s s i f i e d  in to  t h r e e  groups: 

1. Aerodynamic da ta  on nonsteady phenomena. The frequency range of 
i n t e r e s t  i s  from 10 Hz t o  20 kHz with a dynamic range of 70 dB and a d a t a  
record 60 see long. The da ta  are similar t o  white noise mixed with a few 
per iodic  s igna l s ,  and may or may not be s t a t iona ry  within the  60-see length.  
The spectrum i s  continuous. 

2. Impact research da ta .  The frequency range of i n t e r e s t  i s  from 1 t o  
2503 Hz with a dynamic range of 80 dB and a da t a  record 50 t o  100 msec long. 
The da ta  a re  similar t o  a decaying o s c i l l a t i o n  mixed with a small amplitude 
random s igna l .  The spectrum i s  not continuous. These types of da t a  must be 
converted t o  per iodic  da t a  before the  ana lys i s  so  t h a t  they may be averaged. 

3. Phys io logica l  and b io log ica l  data.  The frequency range i s  from 0 .1  
t o  1000 Hz w i th  a dynamic range of 60 dB and a d a t a  record between 0 . 1  t o  
2 see long. Most physiological d a t a  analyzed a re  hear tbea ts  and b r a i n  waves, 
bo th  humn wad animal. The spectrum i s  not continuous. These da ta  must a l so  
be converted t o  per iodic  da ta  before the  ana lys i s .  

HYBRID COMPUTER METHOD OF SPECTRUM ANALYSIS 

Method of Power and Cross-Power Spectrum Analysis 

Power and cross-power spec t ra  a re  analyzed by a hybrid computer i n  a 
manner similar t o  t h e  method discussed under Basic Method of Power Spectrum 
Analysis. There a re  many combinations of analog and d i g i t a l  computers t h a t  
a r e  c a l l e d  hybrid computers. The hybrid computer used t o  implement the  spec- 
trum ana lys i s  discussed i n  t h i s  repor t  i s  t h e  EA1 HYDAC 2000 system, which 
c o n s i s t s  of a 2 3 l R - V  analog computer and a DOS-350 log ic  computer. The method 

7 



Figure 3.- Method of power and cross-power 
spectrum analysis. 

of ana lys i s  i s  shown i n  f igu re  3, and 
i s  thoroughly analyzed i n  appendix C .  
A s  shown i n  appendix C,  t h e  spec t r a  of 
x l ( t )  and x 2 ( t )  a re  

Equations (10) a re  not ambiguous and 
a re  co r rec t  forms for random s igna l s  as 
wel l  as complex or per iodic  s igna ls .  
The aW d iv i s ion  i n  equations (10) i s  

for bandwidth normalization, and should be used f o r  a continuous spectrum only. 
For cross-power spectrum, the  cospectrum and quadspectrum a r e  

2 
& 1 2 ( ~ )  = - (Output 4) 

I n  p a r t i c u l a r ,  f o r  inputs  of 

x l ( t )  = A1 s i n  w l t  

x 2 ( t )  = s i n ( w l t  - e 2 )  

e,= var iab le ,  from 0' t o  360°, C 1 2 ( w )  and & 1 2 ( w )  are  

regard less  of w 1  >_ wo o r  w 1  <_ wo. This means t h a t  t h e r e  i s  no ambiguity 
on the  output s ign  of t he  quadspectrum. 

The implementation of t he  power and cross-power spectrum ana lys i s  between 
computer elements of t he  method shown i n  f i g u r e  3 i s  

1. Analog computer; a l l  spectrum computations. 

2. D i g i t a l  computer; 

(a) Logic computer - for automatic c o n t r o l  of t h e  analog computer 
and analyzer output d i g i t i z i n g  and s torage .  

8 



(b)  IBM 7040/7094 - o f f - l i n e  spectrum scaling, coherence func t ion  
computation, cross-power phase-angle computation, magnetic tape  recorder 
static-skew e r r o r  compensation, and p lo t t i ng .  

# - 
PPIPER 
TAPE 

I n  addi t ion  t o  t h e  standard KYDAC 2000 system, a programmable two-phase 
o s c i l l a t o r  system and a low-pass f i l t e r  system are  a l so  required.  

0. PHASE 

BLOCK 1 FREOUENCY TWO-+ - s'"wo' TAPE - 
;90. PHASE 

EZRkm SYNTHESIZER SHIFTER 

-coswot 

Perhaps the  b e s t  way t o  explain how the hybrid computer i s  used t o  
mechanize t h e  spectrum analys is  i s  t o  divide the  system i n  f i g u r e  3 in to  s i x  
major p a r t s ,  and then describe each p a r t  i n  d e t a i l ;  these  s i x  p a r t s  are: 
(1) a programmable two-phase o s c i l l a t o r ,  ( 2 )  a pseudo band-pass f i l t e r ,  
(3) squaring and averaging, (4)  output equations, (5 )  automatic program con- 
t r o l  and analog da ta  d ig i t i z ing ,  and (6) scaling and s t a t i c  skew-error 
co r rec t  ion . 

1 
READOUT 

T I  

Figure 4. - Programmable two-phase oscill.at,or 

Figure 5. - Auxiliary equipment requi red  for 
spectrum analysis. 

Programmable two -phase oscil lator.-  
A block diagram of  t he  programmable 
two-phase o s c i l l a t o r  c i r c u i t  i s  shown 
i n  f igu re  4. 
f igu re  5. The frequency of t h e  spec- 
trum t o  be analyzed i s  punched onto 
the  paper tape t o  be read by the block 
reader. The frequency synthesizer i s  
a new instrument and i s  simply a d i g i -  
t a l  programmable o s c i l l a t o r .  The two- 
phase s h i f t e r  i s  an a l l -pas s  ac t ive  
network with two outputs.  One output 
i s  the  reference phase; t he  o ther  i s  
the  -90' phase. 
a r e  always 90 25' apa r t  f o r  t he  f r e -  
quency within the  band of 0 .1  t o  
5000 Hz. Before 1966, a two-phase 
synthesizer was EO+, ava i l ab le .  The 
amplitude response of t he  b e s t  s ing le -  
phase frequency synthesizer i s  f12 per- 
cent, and t h i s  l a r g e r  amplitude 
var ia t ion  must be compensated i n  the  
two-phase s h i f t e r  t o  within tl percent 
or b e t t e r .  A t  t he  present,  it i s  r ea -  
sonable t o  expect t h a t  a two-phase 
synthesizer with an amplitude response 
of +2 percent o r  b e t t e r  and a phase 
l i n e a r i t y  of k2' throughout t he  f r e -  
quency range w i l l  soon be ava i lab le .  

The hardware i s  shown i n  

The two output phases 

9 



Pseudo band-pass f i l t e r .  - The mechanization of t he  pseudo band-pass 
f i l t e r  i s  shown i n  figure 6.  
cons is t s  of mul t ip l ie r  1 and low-pass f i l t e r  1. The input s igna l  x ( t )  i s  
multiplied,  o r  heterodyned, with t h e  0' phase of the  o s c i l l a t o r .  
t a n t  output i s  a sum and difference frequency pa i r  f o r  each frequency of 
x ( t ) .  
a re  passed. Thus the mul t ip l ie r  low-pass f i l t e r  combination i s ,  i n  e f f e c t ,  a 
pseudo band-pass f i l t e r .  
and the  bandwidth & i s  equal t o  2wc. I n  e f f ec t ,  x&(t)  i s  x ( t )  passed 
through a band-pass f i l t e r  with bandwidth 

Consider t he  pseudo band-pass f i l t e r  1, which ' 

The resu l -  

A t  the  output of low-pass f i l t e r  1, only those frequencies within wc 
w i  

The center  frequency i s  determined by the  o s c i l l a t o r ,  

h. 

The synthesized band-pass f i l t e r  i n  f igure  6 i s  not a t r u e  band-pass 
f i l t e r .  
ence o s c i l l a t o r ,  as  shown i n  appendix C .  Therefore, the  appl ica t ion  of one 
pseudo band-pass f i l t e r  f o r  spectrum analysis  i s  not s u f f i c i e n t .  
band-pass f i l t e r s  must be used t o  measure both the  inphase and out-of-phase 
components of t he  s ignal ,  since,  i n  general ,  there  i s  a random phase angle 

between the input da ta  and the  o s c i l -  
l a t o r .  I f  t h i s  phase angle i s  repre-  

pseudo band-pass f i l t e r  i s  

A i  s i n ( &  + 0 i ) .  To obta in  a t r u e  mea- 

add these t w o  components vec to r i a l ly  i n  
t he  manner of 

It measures only t h a t  component of t h e  s igna l  inphase with the  r e f e r -  

Two pseudo 

PSEUDO MND-PASS FILTER NO I r------- sented by 0 i ,  the  output of the  f i r s t  * WC 
I '  I A i  cos(wt + Oi ) and the  second, 
L-------J 

x( l )  0' I ) ~ X $ ~ : , ( I ) ]  sure of  the s igna l ,  it i s  necessary t o  
- 90. 

J$+$-rJ \+ - 

l 2  LA_- ~~- i Ai2 = [Ai cos(wt + 0 i )12  
P S E W  UND-PASS FILTER NO 2 

Figure  6 . -  Pseudo band-pass f i l t e r  and r i p p l e  
c anc e l l a t  i o  n . + [ A ~  s i n ( w t  + 0 i )12  

PSEUDO BAND-PASS 
FILTER 

-7---, 
~ K I I  
PREFILTER 

-I oov 

Fie;ure 7 . -  Analog mechanization of pseudo 
band-pass filtering system. 

The pseudo band-pass f i l t e r i n g  
c i r c u i t  i s  shown i n  f i g u r e  7. Only the  
x l ( t )  channel i s  shown; the  
channel i s  the  same. The c i r c u i t  shown 
i n  f igu re  7 should be self-explanatory.  
The outputs of low-pass f i l t e r s  1 and 2 
are x l h  ( t)  and x?&(t) , respect ively.  

The phase and t h e  amplitude responses 
of t he  x l ( t )  channel and the  x 2 ( t )  
channel must be matched i n  order f o r  
the  cross-power spectrum outputs t o  be 
meaningful. Any mismatch w i l l  be 
system e r r o r .  
using the  HYDAC 2000 system and the  
a u x i l i a r y  equipment i s  approximately 
+4O of measurement with a full sca le  

x z ( t )  

The system e r r o r  i n  

of 360'. 
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Squaring and averaging.- The squaring and averaging c i r c u i t  system i s  

True in tegra t ion  i s  used. 

A05 i s  pro- 

During this  hold period, t rack/s tore  amplif ier  ~ 0 6  

Operation of  the c i r c u i t  i n  f i g u r e  9 i s  similar t o  

' shown i n  figure 8 f o r  O l l ( w ) ,  and i n  f igure  9 f o r  Q l ~ ( w ) .  The c i r c u i t s  f o r  
@22(w)  and C12(w) are assumed t o  be understood. 
The in t eg ra t ion  t i m e  i s  set  and control led by  the DOS-350 log ic  computer i n  
accordance with the  mode-logic t ab le  o f  the in t eg ra to r  (A05). 
g ramed t o  in t eg ra t e  for a f ixed  length  of t i m e  T and then t o  hold i t s  value 
a t  t he  end of t i m e  T. 
t racks  A05 and s t o r e s  i t s  value. 
i s  commanded t o  reset .  
t h a t  i n  f i g u r e  8.  

After  ~ 0 6  has s tored  the  value of AO5, A05 

Figure 8 .  - Squaring and averaging system, 
x l ( t )  power spectmm channel. 

Figure 9 . -  Squaring and averaging system, 
Q ~ z ( w )  channel. 

Output equat ions.-  There are four  outputs from the  analyzer when two 
@ l l ( w ) ,  @ 2 2 ( w ) ,  C 1 2 ( w ) ,  and & l e ( w ) .  channels of da t a  are being analyzed: 

After t h e  s i g n a l  i s  t raced  through the  analog c i r c u i t s  and a l l  gain f a c t o r s  
are accounted for, these four  outputs become 

where the above equations are  i n  mean-square power, and 

SA 

So 

magnetic tape  loop speed playback when analyzing da ta  

magnetic tape speed at which the  d a t a  were recorded o r ig ina l ly  

11 



The f ac to r  SA/So 
accurate only t o  about 5 kHz. 
required.  
only f o r  continuous spectra.  
d i r e c t l y  proportional t o  t h e  analyzer bandwidth. ) 

i s  necessary because the mul t ip l i e r s  i n  t h e  23I-R-V a r e  
To analyze t o  20 kHz, a speed reduction of 4 i s  ' 

The normalization of t h e  output equations by the  bandwidth i s  v a l i d  
( A  continuous spectrum i s  one whose output i s  

Automatic program con t ro l  and analog da ta  d i g i t i z i n g .  - The complete 
program f o r  cont ro l l ing  the  analog computer f o r  automatic spectrum ana lys i s  
i s  provided by the  DOS-350 log ic  computer. The DOS-350 a l so  d i g i t i z e s  the  
four  outputs from the  analyzer and punches these outputs on paper tape f o r  
subsequent spectrum sca l ing  and s t a t i c  skew-error compensation on the  
IBM 70@/7094 system. 
functions during spectrum analys is :  

Spec i f i ca l ly ,  t h e  DOS-350 performs the  following 

1. Senses the  con t ro l  s igna l  recorded on one channel of t he  tape  loop 
and s t a r t s  the  ana lys i s  f o r  t h a t  frequency poin t  as programmed on the  f re -  
quency synthesizer.  The s p l i c e  problem on the  loop i s  eliminated by using a 
step-type con t ro l  s igna l  on the  tape loop. 

2. Generates a second s e t  of con t ro l  s igna l s  f o r  spectrum ana lys i s  a t  
higher frequencies i f  t he  da t a  a re  s t a t iona ry  throughout t he  record. 

3. Generates a con t ro l  s igna l  t o  advance t h e  block paper-tape reader by 
one block (one frequency poin t )  at the  end of t h e  ana lys i s  time T .  

4. Generates i n t eg ra to r  and t r ack / s to re  ampl i f ie r  con t ro l  s igna l s  t o  
c o n t r o l  the analog spectrum computation i n  a f i l l y  automatic mode. 

5. Records the number of frequency poin ts  analyzed and shuts of f  t h e  
program at the  end of the ana lys i s .  

6 .  Punches the  program on paper tape  i n  t h e  proper format cons is ten t  
with the  IBM 7040/7094 system. 

Scaling and s t a t i c  skew-error compensation.- Scaling i s  defined here as 
the  conversion of the  spectrum outputs t o  engineering u n i t s  of t h e  o r i g i n a l  
experiment. 
pe r  square foo t  per h e r t z ) ,  then t h e  o r i g i n a l  c a l i b r a t i o n  of t h e  transducer 
must be used t o  multiply t h e  spectrum outputs a t  each frequency po in t .  This 
type of scaling or mult ip l ica t ion  i s  i d e a l l y  s u i t e d  t o  t h e  d i g i t a l  computer. 

For example, i f  t h e  spectrum outputs should be i n  psf/Hz (pounds 

There are two ways of compensating s t a t i c  skew e r r o r :  

1. By an analog delay l i n e  a t  the  output of t h e  magnetic tape recorder,  
and 

2. By computing 8 t % f T  a t  t he  d i g i t a l  computer a f t e r  sca l ing ,  where 
T i s  the  t i m e  d i f fe rence  between recorder channels, and 8 i s  the  arctangent 
of Q 1 2 ( w )  over C 1 2 ( w )  i n  rad ians .  If x l ( t )  l eads  xZ( t )  by T ,  0 - 3 f T  
i s  used; otherwise, 0 + 21tf-r i s  used. 

12 



S t a t i c  skew-error compensation i s  mandatory a t  high frequencies f o r  the 
"cross-power spectrum since present  recorders can have s t a t i c  skew e r r o r s  as 

la rge  as 30 psec, which represents  216O at  20 JsHz. 

Dynamic Range, Resolution, Bandwidth, Averaging Time, 
and Frequency Scan R a t e  

The dynamic range of t he  analyzer must be ca re fu l ly  cqnsidered before the  
Dynamic range here type of analog computer i s  selected for spectrum analysis .  

i s  defined as: 

maximum spectrum output ob t ainab l e  
minimum spectrum output observable dynamic range = 

For a high qua l i t y  +LOO-V computer, the dynamic range i s  about 100 t o  
0.05 or 66 dB. 
gain cont ro ls  are used i n  each channel of the analyzer.  I n  the  x l ( t )  channel, 
K 1 1  i s  the  p r e f i l t e r  gain and K u  i s  the  p o s t f i l t e r  gain.  Before each anal- 
y s i s ,  a search i s  required f o r  the  maximum spectrum output. After t h a t  par t ic-  
u l a r  frequency point  i s  located, Kl1 and K12 are  adjusted f o r  a 100-V output.  
I n  a good +lOO-V analog computer, the output i s  ac tua l ly  l i n e a r  up t o  +120 V 
or more. 

To obtain the  maximum 66-dB dynamic range a t  the output,  two 

Resolution and bandwidth a re  functions of t h e  low-pass f i l t e r  se t t i ng .  
The bandwidth should be chosen i n  accordance with the  type of data  t o  be 
analyzed. To simplify changes of bandwidth, standard low-pass f i l t e r s  are  
used. 

The problem of averaging t i m e  i s  solved by using t r u e  averaging. 
frequency scan rate has no meaning i n  t h i s  hybrid method of spectrum analysis ,  
s ince a sweep-type o s c i l l a t o r  i s  not used. 
analysis ,  t he  next frequency point  can be analyzed as soon as the system 
t r a n s i e n t  decays t o  zero. 

The 

After  completing a frequency-point 

S t a t i s t i c  a 1  Uncertainty 

The predominant source of e r ro r  o r  uncertainty i n  an analyzed spectrum i s  
the  random s t a t i s t i c a l  va r i a t ions  of the sample record. Perhaps the  most com- 
p l e t e  discussion, bu t  not necessar i ly  the  e a s i e s t  t o  understand, on t h e  sub- 
j e c t  of  s t a t i s t i c a l  e r r o r  i s  given by Chang ( r e f .  8 ) .  
were a l so  given by Bendat and Piersol. ( r e f .  9). 
defined as relative f o r  s t a t i s t i c a l  e r r o r  comparison. 
confidence limits a re  defined as 

Some e r ro r  discussions 

I n  reference 8, the 
Confidence l i m i t s  can be 



8 

t r u e  spectrum 

analyzed spectrum 

number of sample records 

a constant depending on the spec i f ied  probabi l i ty ,  tabulated as  
follows : 

P 

0.5 
.8 
-9  
95 

-99 
-999 

kP 

0 477 
.go6 

1.163 
1.386 
1.82 
2.32 

Example: The s igna l  t o  be analyzed has the  following analyzer parameters: 

N =  1 ,  T =  10 s e c ,  & =  10Hz 

Now determine the  90-percent confidence l i m i t s .  

Solution: The r m s  per u n i t  e r r o r  of  each record i s  

For P = 0.9 o r  90 percent,  kp = 1.163. Therefore, 

-=  -- - 0.858 1.198 , l + a  1 - a  

Thus, there i s  a 90-percent p robab i l i t y  that, t he  t r u e  spectrum l i e s  between 
0.858 and 1.198 times the measured spectrum. 
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Typical Results 
FILTER RESPONSE 

CHARACTERISTIC 
ACTUAL COMPUTER 

OUTPUT 

Figure 10.- Analysis of a sine wave. 

MEASURED 
- ACTUAL 

1 1 

0 5 10 15 20 25 
FREQUENCY. kHZ 

Figure 11.- Analysis of white noise from 
10 Hz to 20 kHz. 

253 500 
FREQUENCY. HL 

Figure 12.- Analysis of a heartbeat pulse 

Figure 10 shows the  analysis  of a 
single 0.707 V r m s  s ine wave a t  1 kc as  
an input t o  both t h e  x l ( t )  and x2( t )  
channels. The r e s u l t  shown i n  f i g -  
ure  10 i s  cor rec t  s ince the analysis  of 
a s ingle  s ine wave f o r  a frequency band 
across the  analyzer bandwidth i s  the 
amplitude response of the analyzer 
band-pass f i l t e r .  

The analysis  of a band-limited 
white noise from a General Radio 
GR-1390B generator i s  shown i n  f i g -  
ULC 11. The co?lse i s  f i r s t  passed 
through a low-pass f i l t e r  with an 
e f f ec t ive  bandwidth of 20 kHz. The 
amplitude of the noise i s  then adjusted 
t o  read 0.45 Vrms  at the  output of t he  
f i l t e r  ( i . e . ,  the  input t o  the  ana- 
l yze r ) .  This gives a power spec t r a l  
density of V2/Hz. The s c a t t e r  of 
the measured values about t he  ac tua l  
values is  within +2 percent.  

- - -~ - 

Figure 12 shows an analysis  of  one 
heartbeat from medical research with a 
0.2-Hz analyzer bandwidth from 0.5 t o  
125 HZ. 

Figures 1.3 and 1 4  show the power 
and the  cross-power spectra  of two 
typ ica l  20-kHz wind-tunnel data .  These 
data a re  from transducers 1 inch apart ,  
s t a t ions  -18.19 and -17.19. These two 
f igures  a re  p lo t t ed  by the  d i g i t a l  com- 
puter s ide by s ide on a 31 X 31-inch 
sheet .  The accuracy and confidence of 
these f igu res  are  confirmed by three  
CPRMS numbers. 
i s  the  RVS value of the da ta  measured 
a t  the  wind tunnel  during an experiment. 
The CPRMS (loop output) i s  the  RMS 
value of t h e  da ta  a f t e r  it i s  t r a n s -  
f e r r ed  onto an analog loop recorder f o r  
spectrum analysis .  The CPRMS (psd 
area)  i s  the  RMS value of the da ta  com- 
puted i n  the  d i g i t a l  computer by taking 
the  square root  of the area underneath 
the  power spectrum curve. Under i d e a l  

The CPRMS (wind tunnel)  
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Figure 13.- Power s p e c t r a l  of two t y p i c a l  
20 kHz wind-tunnel da ta .  
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Figure 1 4 . -  Cross-power s p e c t n m  of two 
t y p i c a l  20 kHz wind-tunnel da ta .  
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Figure 15.- Analysis o f  t he  t r a n s f e r  f i n c t i o n .  F igure  16.- Analyzed t r a n s f e r  f'unction of 
a human p i l o t .  

conditions when no e r r o r  occurs, these three  numbers should be equal.  A s  
indicated i n  f i gu re  13, t he  e r r o r  i s  about 3.15 percent .  

Figure 15  shows the analysis  of a known t r a n s f e r  function, Yp.  This 
same t r ans fe r  function w a s  analyzed independently i n  the  d i g i t a l  computer by 
the  BOMM-Tukey method ( r e f .  10). The r e s u l t s  obtained a r e  i n  c lose agreement 
with the  ac tua l  frequency and phase response. 
a human p i l o t .  Note the close agreement of the  r e s u l t s  obtained by the  three  
methods - t h e  hybrid method, the  BOMM-Fourier method, and the  BOMM-Tukey 
met hod. 

Figure 16 shows the  ana lys i s  of 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Calif ., Sept.  27, 1966 
, 124-11-04-06 
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d '  
APPENDIX A 

DERIVATION OF O l l ( w )  FOR RANDOM SIGNALS 

FROM AUTOCORRFXTION 

The purpose of t h i s  appendix i s  t o  show t h a t  the  power spectrum 

J-, 

can he estimated by 

To proceed with the  der ivat ion,  the  inverse transform of equation ( A l )  i s  
taken. 

Since 

the  maximum psd i s  obtained f o r  T = 0. That i s ,  

T / 2  

= l i m  1 x 2 ( t ) d t  T 
T+, -T/2 

I n  the der iva t ion  of  a cross  spectrum, T cannot equal zero because R12(0) i s  
not necessar i ly  the  maximum value. 
genera l ly  complex. Equations (A5) should be c l e a r  i n t u i t i v e l y  since the t o t a l  
power of 
underneath t h e  power spectrum curve. Now, f o r  small dw, du approaches h. 
I n  the  l i m i t ,  as dw approaches zero, 

For t h i s  reason, the  cross  spectrum i s  

x ( t )  i s  equal  t o  the  mean square value, and a l so  t o  the t o t a l  a rea  



The in t e rp re t a t ion  of equations (A6)  i s  t h a t  i n t eg ra t ing  Ql l (w)  i s  equivalent 
t o  obtaining the  a r e a  underneath the  spectrum curve. 
obtained by dividing the  a rea  i n t o  n small areas wi th  width h and summing 
over n. I n  view of equations ( A 6 ) ,  equation ( A 5 a )  becomes 

This a rea  can a l so  be 

o r  

from which 

o r ,  i n  general  notation, 

~ ~ ~ ~ ( 0 )  = l i m  2 o l l h ( w ) h  
&-0 

T 
Q l l ( w )  = l i m  & x & ( t ) d t  

&+O 

T- 

where x,(t) i s  in t e rp re t ed  as 
bandwidth h. This completes the  der iva t ion .  

x ( t )  passed through a band-pass f i l t e r  wi th  

18 



APPENDIX B 

DEEIVATION OF 0 1 2 ( ~ )  FOR RANDOM SIGNALS 

FROM CROSSCOWLATION 

The purpose of t h i s  appendix i s  t o  show t h a t  the cross-power'spectrum 

can be estimated by 

where 

0 and x2 ( t)  i s  x2 ( t)  delayed 90'. To proceed with t h e  derivation, the 

inverse transform of equation ( B l )  i s  taken. The var iable  delay T cannot be 
s e t  equal  t o  zero because R12(0) i s  not equal t o  nor, i n  general, g rea te r  
than R 1 2 ( 7 ) .  
r a t h e r  than rigorous.  Now, 

& &I 

It i s  f e l t  t h a t  the  de r imt ion  t h a t  follows i s  heur i s t ic ,  

J 
--M 

Since an a r b i t r a r y  func t ion  can be decomposed i n t o  a sum of an even and an 
odd func t ion  (e .g . ,  r e f .  7) ,  t h e n ,  

R 1 2 ( 7 )  = R 1 2 ( 7 ) e  f R 1 2 ( 7 1 0  (B5) 



where- R 1 2 (  T ) ~  and R 1 2 ( ~ ) ~  
t i v e l y .  

are  the even and odd p a r t s  of R12( T) , respec- \ 

Now, the r e s u l t  of equating equations (B5) and (B4b) i s  

With some in tu i t i on ,  l e t  us equate the  even and odd p a r t s  of equation (B6). 
That i s ,  

I n  a manner s imilar  t o  the der ivat ion of the  power spectrum, the cospectrum 
can be derived as follows: 

1 c 1 2 h  = l i m  R 1 , ~ ~ ( 0 ) .  
cw ' 0  

I n  general, 

20 
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# 
1 c 1 2 h  = l i r n  E R p h ( 0 )  

h + O  

= l i r n  & lo x l h ( t ) x z h ( t ) d t  
h + O  

This completes the  der ivat ion for the  cospectrum. Now, f o r  the  quadspectrum, 

= l i r n  2 Q12h3,(w)Au 

n=o h + O  

I n  general ,  

= l i r n  - 1 (-j)R12&(0) 
Q12& m 

f3.d +O 

= l i r n  A ( - j )  jo x l b ( t ) x z b ( t ) d t  2 h T  
h +O 

T-to 

This completes t h e  der ivat ion for t he  quadspectrum. 
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APPENDIX c 
L 

DEFXVATION OF OUTPUT EQUATIONS FOR ANALOG mTHOD 

OF POWER AND CROSS-POWER SPECTRUM ANALYSIS 

The schematic diagram for t h i s  method i s  shown i n  f i g u r e  3 .  L e t  t h e  
inpu t s  be 

x l ( t )  = Ai s i n ( w i t  + ei) 
i=i 

X Z ( t )  = C ci s i n ( w i t  + (pi) 

i= 1 

(c3) s i n  w,t for 0' phase 
cos w o t  f o r  -90° phase 

where ei, i n  genera l ,  does not  equal  'pi. The va lues  0 i  and c p i  i n d i c a t e  
t h a t  t h e  inputs ,  i n  genera l ,  are random phase w i t h  r e s p e c t  t o  t h e  o s c i l l a t o r .  
With t h e  summation understood, t h e  f i l t e r e d  ou tpu t s  are 

0 B x lb ( t )  = - A i  s i n  61 2 

where 

tjl = ( w i t  - w 0 t  + ei) 

82 = ( w i t  - w o t  + c p . )  1 

The power spectrums of x l ( t )  and x 2 ( t )  i n  terms of mean square power are 
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where 

Equations ( C 6 )  have no ambiguity and are cor rec t  forms f o r  random s igna l s  as 
we l l  as for complex or per iodic  s igna l s .  The d iv is ion  by Lu i n  equa- 
t i o n s  ( C 6 )  i s  for bandwidth normalization, and should be used f o r  continuous 
spec t ra  only. 
a r e  

The cospectrum and quadspectrum i n  terms of mean squared power 

(C74 2 
m = - output 3 

= - - 2 output 4 ( C P )  
&I 

This completes t h e  der iva t ion  for t he  o u t p t  ecpations. To show t h a t  t h e  
quadspectrum has no ambiguity i n  s i g n  as a func t ion  of frequency, 

- A i  sin 61Ci cos 62 )d t  



TO simplify equation (CS), l e t  

. 

Then 

and 

x l ( t )  = A1 s i n  w l t  

x 2 ( t )  = A1 sin(w1t - 02) 

= a variable ,  from 0' t o  360' 

I 6 1  = ( w 1  - w , ) t  

82 = (wit - w 0 t  - e2) 

output 4 = - [cos(w, - w o ) t  sin(w1t - w o t  - e2)  4 T  

- sin(wl - w o ) t  cos(wlt - w o t  - 82) Id t  

Case 1. w 1  > wo by Ado; w 1  = wo + Ado 

output 4 = - [ c o s ( b o )  t s i n ( b o t  - e,) 

- sin(h3,)t  cos(Ad,t - 8 2 ) l d t  

[ ( -cos2 hot  s i n  0 2 )  - ( sin2 b o t  s i n  02) I d t  4 T  

A 'B2 - - s i n  e2 - 4  

Case 2. w l  = wo 

Output 4 = - A- - ( - s i n  e2)d t  2B2 4 T  s' 
A 2B2 - s i n  e2 - 4  

24 



, Case 3. w1 < wo; w1 = wo - ho 

output 4 = - [ -cos(&,)t s i n ( b o t  + e,) 

+ s i n ( b o ) t  c o s ( h o t  + 0 2 ) ] d t  

= -!@E1 J T  [ ( -cos2 hot sin 62)  + ( -sin2 hot s i n  e2) I d t  4 T  

A 2B2 
= +- s i n  e2 (c14) 

Thus, f o r  a l l  three cases, output 4 ( a  quadspectrum output) i s  always a p:US 
s ine  f inct ion,  and there  i s  no aKibiguity. 
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