175 research outputs found

    A Combined XRD/XRF Instrument for Lunar Resource Assessment

    Get PDF
    Robotic surface missions to the Moon should be capable of measuring mineral as well as chemical abundances in regolith samples. Although much is already known about the lunar regolith, our data are far from comprehensive. Most of the regolith samples returned to Earth for analysis had lost the upper surface, or it was intermixed with deeper regolith. This upper surface is the part of the regolith most recently exposed to the solar wind; as such it will be important to resource assessment. In addition, it may be far easier to mine and process the uppermost few centimeters of regolith over a broad area than to engage in deep excavation of a smaller area. The most direct means of analyzing the regolith surface will be by studies in situ. In addition, the analysis of the impact-origin regolith surfaces, the Fe-rich glasses of mare pyroclastic deposits, are of resource interest, but are inadequately known; none of the extensive surface-exposed pyroclastic deposits of the Moon have been systematically sampled, although we know something about such deposits from the Apollo 17 site. Because of the potential importance of pyroclastic deposits, methods to quantify glass as well as mineral abundances will be important to resource evaluation. Combined x ray diffraction (XRD) and x ray fluorescence (XRF) analysis will address many resource characterization problems on the Moon. XRF methods are valuable for obtaining full major-element abundances with high precision. Such data, collected in parallel with quantitative mineralogy, permit unambiguous determination of both mineral and chemical abundances where concentrations are high enough to be of resource grade. Collection of both XRD and XRF data from a single sample provides simultaneous chemical and mineralogic information. These data can be used to correlate quantitative chemistry and mineralogy as a set of simultaneous linear equations, the solution of which can lead to full characterization of the sample. The use of Rietveld methods for XRD data analysis can provide a powerful tool for quantitative mineralogy and for obtaining crystallographic data on complex minerals

    CheMin: A Definitive Mineralogy Instrument in the Analytical Laboratory of the Mars Science Laboratory

    Get PDF
    An important goal of the Mars Science Laboratory (MSL '09) mission is the determination of definitive mineralogy and chemical composition. CheMin is a miniature X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that has been chosen for the analytical laboratory of MSL. CheMin utilizes a miniature microfocus source cobalt X-ray tube, a transmission sample cell and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D X-ray diffraction patterns and X-ray fluorescence spectra from powdered or crushed samples. A diagrammatic view of the instrument is shown. Additional information is included in the original extended abstract

    X-Ray Diffraction Reference Intensity Ratios of Amorphous and Poorly Crystalline Phases: Implications for CheMin on the Mars Science Laboratory

    Get PDF
    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. Piezoelectric vibration of the cell is used to randomize the sample to reduce preferred orientation effects. Instrument details are provided in [1, 2, 3]. Analyses of rock and soil samples by the Mars Exploration Rovers (MER) show nanophase ferric oxide (npOx) is a significant component of the Martian global soil [4] and is thought to be one of the major contributing phases that the Curiosity rover will encounter if a soil sample is analyzed in Gale Crater. Because of the nature of this material, npOx will likely contribute to an X-ray amorphous or short-order component of a XRD pattern measured by the CheMin instrument

    Mineralogical and Geochemical Trends in a Fluviolacustrine Sequence in Gale Crater, Mars

    Get PDF
    The Mars Science Laboratory rover, Curiosity, landed at Gale crater in August 2012 and has been investigating a sequence of dominantly fluviolacustrine sediments deposited 3.6-3.2 billion years ago. Curiosity collects quantitative mineralogical data with the CheMin XRD/XRF instrument and quantitative chemical data with the APXS and ChemCam instruments. These datasets show stratigraphic mineralogical and geochemical variability that suggest a complex aqueous history. The Murray Formation, primarily composed of fine-laminated mudstone, has been studied in detail since the arrival at the Pahrump Hills in September 2014. CheMin data from four samples show variable amounts of iron oxides, phyllosilicates, sulfates, amorphous and crystalline silica, and mafic silicate minerals. Geochemical data throughout the section show that there is significant variability in Zn, Ni, and Mn concentrations. Mineralogical and geochemical trends with stratigraphy suggest one of possibly several aqueous episodes involved alteration in an open system under acidic pH, though other working hypotheses may explain these and other trends. Data from the Murray Formation contrast with those collected from the Sheepbed mudstone located approximately 60 meters below the base of the Murray Formation, which showed evidence for diagenesis in a closed system at circumneutral pH. Ca-sulfates filled late-stage veins in both mudstones

    Test and Delivery of the Chemin Mineralogical Instrument for Mars Science Laboratory

    Get PDF
    The CheMin mineralogical instrument on MSL will return quantitative powder X-ray diffraction data (XRD) and qualitative X-ray fluorescence data (XRF; 14<Z<92) from scooped soil samples and drilled rock powders collected on the Mars surface. The geometry of the source, sample, and detector is shown. A transmission geometry was chosen so that diffracted intensities in the low-20 region (5-15 deg), important for phyllosilicate identification, could be detected

    Detection of Siderite (FeCO3) in Glen Torridon Samples by the Mars Science Laboratory Rover

    Get PDF
    Siderite (FeCO3) has been detected in Gale Crater for the first time by the Mars Science Laboratory (MSL) Curiosity and is seen in multiple samples in the Glen Torridon (GT) region. The identification of siderite is based on evolved gas analysis (EGA) data from the Sample Analysis at Mars (SAM) instrument and X-ray diffraction (XRD) data from the Chemistry and Mineralogy (CheMin) instrument. Curiosity descended off of the Vera Rubin ridge (VRR) into the Glen Torridon region on Sol 2300. Glen Torridon is of particular interest because a strong clay mineral signature had been detected by orbital instruments [1]. To date, four drilled samples have been collected at two different drill locations: Kilmarie and Aberlady from adjacent blocks at the base of the south side of VRR in the Jura member and Glen Etive 1 and 2 on the same block in the Knockfarril member

    Mineralogy of Vera Rubin Ridge in Gale Crater from the Mars Science Laboratory CheMin instrument

    Get PDF
    Gale crater was selected as the landing site for the Mars Science Laboratory Curiosity rover because of orbital evidence for a variety of secondary minerals in the lower slopes of Aeolis Mons (aka Mount Sharp) that indicate changes in aqueous conditions over time. Distinct units demonstrate orbital spectral signatures of hematite, phyllosilicate (smectite), and sulfate minerals, which suggest that ancient aqueous environments in Gale crater varied in oxidation potential, pH, and water activity. Vera Rubin ridge (VRR) is the first of these units identified from orbit to have been studied by Curiosity. Orbital near-infrared data from VRR show a strong band at 860 nm indicative of hematite. Before Curiosity arrived at VRR, the hypotheses to explain the formation of hematite included (1) precipitation at a redox interface where aqueous Fe2+ was oxidized to Fe3+, and (2) acidic alteration of olivine in oxic fluids. Studying the composition and sedimentology of the rocks on VRR allow us to test and refine these hypotheses and flesh out the depositional and diagenetic history of the ridge. Here, we focus on the mineralogical results of four rock powders drilled from and immediately below VRR as determined by CheMin
    corecore