13 research outputs found
Bichromatic Slowing of Metastable Helium
We examine two approaches for significantly extending the velocity range of
the optical bichromatic force (BCF), to make it useful for laser deceleration
of atomic and molecular beams. First, we present experimental results and
calculations for BCF deceleration of metastable helium using very large BCF
detunings, and discuss the limitations of this approach. We consider in detail
the constraints, both inherent and practical, that set the usable upper limit
of the BCF. We then show that a more promising approach is to utilize a BCF
profile with a relatively small velocity range in conjunction with chirped
Doppler shifts, to keep the force resonant with the atoms as they are slowed.
In an initial experimental test of this chirped BCF method, helium atoms are
slowed by m/s using a BCF profile with a velocity width of m/s. Straightforward scaling of the present results indicates that a
decelerator for He* capable of loading a magneto-optical trap (MOT) can yield a
brightness comparable to a much larger Zeeman slower.Comment: 11 pages, 9 figures. Published in Phys. Rev.
Prospects for rapid deceleration of small molecules by optical bichromatic forces
We examine the prospects for utilizing the optical bichromatic force (BCF) to
greatly enhance laser deceleration and cooling for near-cycling transitions in
small molecules. We discuss the expected behavior of the BCF in near-cycling
transitions with internal degeneracies, then consider the specific example of
decelerating a beam of calcium monofluoride molecules. We have selected CaF as
a prototype molecule both because it has an easily-accessible near-cycling
transition, and because it is well-suited to studies of ultracold molecular
physics and chemistry. We also report experimental verification of one of the
key requirements, the production of large bichromatic forces in a multi-level
system, by performing tests in an atomic beam of metastable helium.Comment: 11 pages, 6 figures, revised version, to be published in Physical
Review
An invertebrate infection model for evaluating anti-fungal agents against dermatophytosis
Abstract Animal models of pathogenic infection are needed to evaluate candidate compounds for the development of anti-infectious drugs. Dermatophytes are pathogenic fungi that cause several infectious diseases. We established a silkworm dermatophyte infection model to evaluate anti-fungal drugs. Injection of conidia of the dermatophyte Arthroderma vanbreuseghemii into silkworms was lethal. A. vanbreuseghemii conidia germinated in liquid culture were more potent against silkworms than non-germinated conidia. Germinated conidia of other dermatophytes, Arthroderma benhamiae, Trichophyton rubrum, and Microsporum canis, also killed silkworms. Injection of heat-treated germinated A. vanbreuseghemii conidia did not kill silkworms, suggesting that only viable fungi are virulent. Injecting terbinafine or itraconazole, oral drugs used clinically to treat dermatophytosis, into the silkworm midgut had therapeutic effects against infection with germinated A. vanbreuseghemii conidia. When silkworms were injected with A. vanbreuseghemii expressing enhanced green fluorescent protein (eGFP), mycelial growth of the fungus was observed in the fat body and midgut. Injection of terbinafine into the silkworm midgut, which corresponds to oral administration in humans, inhibited the growth of A. vanbreuseghemii expressing eGFP in the fat body. These findings suggest that the silkworm infection model with eGFP-expressing dermatophytes is useful for evaluating the therapeutic activity of orally administered anti-fungal agents against dermatophytes