12 research outputs found

    Synthesis of Cobalt Oxides Thin Films Fractal Structures by Laser Chemical Vapor Deposition

    Get PDF
    Thin films of cobalt oxides (CoO and Co3O4) fractal structures have been synthesized by using laser chemical vapor deposition at room temperature and atmospheric pressure. Various factors which affect the density and crystallization of cobalt oxides fractal shapes have been examined. We show that the fractal structures can be described by diffusion-limited aggregation model and discuss a new possibility to control the fractal structures

    On-chip remote charger model using plasmonic island circuit

    Get PDF
    We propose the remote charger model using the light fidelity (LiFi) transmission and integrate microring resonator circuit. It consists of the stacked layers of silicon-graphene-gold materials known as a plasmonic island placed at the center of the modified add-drop filter. The input light power from the remote LiFi can enter into the island via a silicon waveguide. The optimized input power is obtained by the coupled micro-lens on the silicon surface. The induced electron mobility generated in the gold layer by the interfacing layer between silicon-graphene. This is the reversed interaction of the whispering gallery mode light power of the microring system, in which the generated power is fed back into the microring circuit. The electron mobility is the required output and obtained at the device ports and characterized for the remote current source applications. The obtained calculation results have shown that the output current of ∼2.5 × 10−11 AW−1, with the gold height of 1.0 µm and the input power of 5.0 W is obtained at the output port, which is shown the potential application for a short range free pace remote charger

    A novel plasmonic interferometry and the potential applications

    Get PDF
    In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility) can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform

    Coherent light squeezing states within a modified microring system

    Get PDF
    We have proposed the simple method of the squeezed light generation in the modified microring resonator, which is known as the microring conjugate mirror (MCM). When the monochromatic light is input into the MCM, the general form of the squeezed coherent states for a quantum harmonic oscillator can be generated by controlling the additional two side rings, which are the phase modulators. By using the graphical method called the Optiwave program, the coherent squeezed states of coherent light within an MCM can be obtained and interpreted as the amplitude, phase, quadrature and photon number-squeezed states. This method has shown potentials for microring related device design, which can be used before practical applications

    Fast, slow, stopping and storing light simultaneously using a panda ring on-chip

    No full text
    Past and slow light behaviors are the interesting aspects of light which can be useful for many fundamental and applied researches. Pornsuwancharoen and Yupapin et al. [1] have proposed the use of a simple device called “microring resonator” to perform such behaviors. In this research work, the four different behaviors of light i.e., fast, slow, stopping and storing of light where investigated using a ring resonator. Nowadays, stopping or cooling light beam has become the promising technique for atom/molecule trapping investigations (using static or dynamic tweezers), especially, after the announcement of Nobel Prize 2012 in Physics on the whispering gallery modes [2, 3]. There are two more kinds of devices that can be used to trap light beams, the use of microcavity arrays performed by Yanik and Fan [4], and nonlinear microring resonator by Yupapin and Pornsuwancharoen [5] for stopping light (laser beam). Nanyang Technological University scientists have also done experiment to slowing the light in microresonators using a microring system recently [6]. This concept is a concrete backbone for many applications
    corecore