25,622 research outputs found

    Detrended fluctuation analysis on the correlations of complex networks under attack and repair strategy

    Full text link
    We analyze the correlation properties of the Erdos-Renyi random graph (RG) and the Barabasi-Albert scale-free network (SF) under the attack and repair strategy with detrended fluctuation analysis (DFA). The maximum degree k_max, representing the local property of the system, shows similar scaling behaviors for random graphs and scale-free networks. The fluctuations are quite random at short time scales but display strong anticorrelation at longer time scales under the same system size N and different repair probability p_re. The average degree , revealing the statistical property of the system, exhibits completely different scaling behaviors for random graphs and scale-free networks. Random graphs display long-range power-law correlations. Scale-free networks are uncorrelated at short time scales; while anticorrelated at longer time scales and the anticorrelation becoming stronger with the increase of p_re.Comment: 5 pages, 4 figure

    An Efficient Modified "Walk On Spheres" Algorithm for the Linearized Poisson-Boltzmann Equation

    Full text link
    A discrete random walk method on grids was proposed and used to solve the linearized Poisson-Boltzmann equation (LPBE) \cite{Rammile}. Here, we present a new and efficient grid-free random walk method. Based on a modified `` Walk On Spheres" (WOS) algorithm \cite{Elepov-Mihailov1973} for the LPBE, this Monte Carlo algorithm uses a survival probability distribution function for the random walker in a continuous and free diffusion region. The new simulation method is illustrated by computing four analytically solvable problems. In all cases, excellent agreement is observed.Comment: 12 pages, 5 figure

    Antilinear spectral symmetry and the vortex zero-modes in topological insulators and graphene

    Full text link
    We construct the general extension of the four-dimensional Jackiw-Rossi-Dirac Hamiltonian that preserves the antilinear reflection symmetry between the positive and negative energy eigenstates. Among other systems, the resulting Hamiltonian describes the s-wave superconducting vortex at the surface of the topological insulator, at a finite chemical potential, and in the presence of both Zeeman and orbital couplings to the external magnetic field. Here we find that the bound zero-mode exists only when the Zeeman term is below a critical value. Other physical realizations pertaining to graphene are considered, and some novel zero-energy wave functions are analytically computed.Comment: 6 revtex pages; typos corrected, published versio

    Magnetotransport in a double quantum wire: Modeling using a scattering formalism built on the Lippmann-Schwinger equation

    Full text link
    We model electronic transport through a double quantum wire in an external homogeneous perpendicular magnetic field using a scattering formalism built on the Lippmann-Schwinger equation. In the scattering region a window is opened between the parallel wires allowing for inter- and intra-wire scattering processes. Due to the parity breaking of the magnetic field the ensuing subband energy spectrum of the double wire system with its regimes of hole- and electron-like propagating modes leads to a more structure rich conductance as a function of the energy of the incoming waves than is seen in a single parabolically confined quantum wire. The more complex structure of the evanescent modes of the system also leaves its marks on the conductance.Comment: RevTeX, 8 pages with 10 included postscript figures, high resolution version available at http://hartree.raunvis.hi.is/~vidar/Rann/DW_VGCST_06.pd

    Clock synchronization experiments using OMEGA transmissions

    Get PDF
    The OMEGA transmissions from North Dakota on 13.10 and 12.85 kHz were monitored at several sites using a recently developed OMEGA timing receiver specifically designed for this purpose. The experiments were conducted at Goddard Space Flight Center, Greenbelt, Maryland; U.S. Naval Observatory, Washington, D.C.; and at the NASA tracking station, Rosman, North Carolina. Results show that cycle identification of the two carrier frequencies was made at each test site, thus, coarse time (76 microseconds) from the OMEGA transmitted signals to within the ambiguity period of each OMEGA frequency was extracted. The fine time determination, which was extracted from the phase difference between the received OMEGA signals and locally generated signals, was about + or - 2 microseconds for daytime reception and about + or - 5 microseconds for nighttime reception

    Recent field test results using OMEGA transmissions for clock synchronization

    Get PDF
    The results are presented of clock synchronization experiments using OMEGA transmissions from North Dakota on 13.10 kHz and 12.85 kHz. The OMEGA transmissions were monitored during April 1974 from NASA tracking sites located at Madrid, Spain; Canary Island; and Winkfield, England. The sites are located at distances between 6600 kilometers (22,100 microseconds) to 7300 kilometers (24,400 microseconds) from North Dakota. The data shows that cycle identification of the received signals was accomplished. There are, however, discrepancies between the measured and calculated propagation delay values which have not been explained, but seem to increase with distance between the receiver and the transmitter. The data also indicates that three strategically located OMEGA transmitting stations may be adequate to provide worldwide coverage for clock synchronization to within plus or minus two (2) microseconds

    Single step optimal block matched motion estimation with motion vectors having arbitrary pixel precisions

    Get PDF
    This paper proposes a non-linear block matched motion model with motion vectors having arbitrary pixel precisions. The optimal motion vector which minimizes the mean square error is solved analytically in a single step. Our proposed algorithm can be regarded as a generalization of conventional half pixel search algorithms and quarter pixel search algorithms because our proposed algorithm could achieve motion vectors with arbitrary pixel precisions. Also, the computational effort of our proposed algorithm is lower than that of conventional quarter pixel search algorithms because our proposed algorithm could achieve motion vectors in a single step
    • …
    corecore