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Abstract—This paper proposes a non-linear block matched 
motion model with motion vectors having arbitrary pixel 
precisions. The optimal motion vector which minimizes the 
mean square error is solved analytically in a single step. Our 
proposed algorithm can be regarded as a generalization of 
conventional half pixel search algorithms and quarter pixel 
search algorithms because our proposed algorithm could 
achieve motion vectors with arbitrary pixel precisions. Also, 
the computational effort of our proposed algorithm is lower 
than that of conventional quarter pixel search algorithms 
because our proposed algorithm could achieve motion 
vectors in a single step. 

I. INTRODUCTION 
Motion estimations play an important role in motion 

tracking applications, such as in a respiratory motion 
tracking application [1] and in a facial motion tracking 
application [2]. The most common motion estimation 
algorithm is the block matched motion estimation 
algorithm [3]. The current frame is usually partitioned into 
numbers of macro blocks with fixed or variable sizes. 
Each macro block in the current frame is compared with a 
number of macro blocks in the reference frame translated 
within a search window. Block matching errors are 
calculated based on a predefined cost function. The macro 
block in the reference frame that gives the minimum block 
matching error is considered as the best approximation of 
the macro block in the current frame. Each macro block in 
the current frame is represented by the best macro block in 
the reference frame, the motion vector (the motion vector 
is the vector representing the translation of the macro 
block in the reference frame.) and the residue (the residue 
is the difference between the macro block in the current 
frame and the best translated macro block in the reference 
frame). 

The most common block matched motion estimation 
algorithm is the full integer pixel search algorithm. The 
full integer pixel search algorithm is a centre based 
algorithm in which all integer pixel locations in the search 
window are examined. However, the motion vectors are 
not necessarily represented by integer pixel precisions and 
a large portion of macro blocks in the current frame are 
best approximated by the macro blocks in the reference 
frame translated within a plus or a minus one pixel range 

around integer pixel locations. Hence, block matching 
errors could be further reduced if motion vectors are 
represented by non-integer pixel precisions. Conventional 
non-integer pixel search algorithms start searching pixels 
at half pixel locations. Half pixels are interpolated by 
nearby pixels at integer pixel locations. Block matching 
errors at some or all half pixel locations are evaluated. The 
half pixel location with the minimum block matching 
error is chosen. Similarly, quarter pixels are interpolated 
by nearby pixels at half pixel and integer pixel locations. 
The quarter pixel location with the minimum block 
matching error is chosen. Finer pixel locations could be 
evaluated successively. Since the block matching errors at 
finer pixel locations are evaluated via interpolations from 
the coarser pixel locations, if motion vectors with very 
fine pixel precisions are required, then many pixel 
locations are required to be evaluated. Hence, 
computational efforts of these algorithms are very heavy 
and these algorithms are very inefficient. Also, existing 
pixel search algorithms could only achieve motion vectors 
with rational pixel precisions. If the true motion vector is 
with an irrational pixel precision, then an infinite number 
of pixel locations have to be evaluated. 

Interpolations are implemented via some predefined 
functions, such as a real valued quadratic function with 
two variables [4], a paraboloid function [5] and a straight 
line [6]. As the block matching error is a highly non-linear 
and non-convex function of the motion vector, it is very 
difficult to solve the motion vector that globally 
minimizes the block matching error. Hence, many pixel 
locations are still required to be evaluated and the pixel 
location with the lowest block matching error is chosen. 
Similar to conventional quarter pixel search algorithms, 
computational efforts of these algorithms are still very 
heavy and these algorithms are still very inefficient. Also, 
if the true motion vector is with an irrational pixel 
precision, then an infinite number of pixel locations still 
have to be evaluated. 

In this paper, we propose a non-linear block matched 
motion model with motion vectors having arbitrary pixel 
precisions. The optimal motion vector which minimizes 
the mean square error is solved analytically in a single 
step. Our proposed algorithm has the following salient 
features. 1) The block matching error is evaluated in a 
single step which globally minimizes the mean square 
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error. As the calculation of the mean square error at a fine 
pixel location is not derived from the coarser pixel 
locations, the computational effort of our proposed 
algorithm is much lower than that of conventional quarter 
pixel search algorithms. 2) Our proposed algorithm could 
achieve the true motion vector even though the true 
motion vector is with an irrational pixel precision. 
Computer numerical simulations show that the mean 
square errors of various video sequences based on our 
proposed algorithm are lower than that based on 
conventional half pixel search algorithms and quarter 
pixel search algorithms. The rest part of this paper is 
organized as follows. Section II describes our proposed 
non-linear block matched motion model. Section III 
derives analytically the optimal motion vector which 
minimizes the mean square error. Computer numerical 
simulations are presented in Section IV. Finally, a 
conclusion is drawn in Section V. 

PROPOSED NON-LINEAR BLOCK MATCHED 
MOTION MODEL 

II. 

Denote the size of a macro block as , where 
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] +∈∀ Zk ( )kk qp ,0,0 ,  is the best 
integer pixel location which minimizes the block matching 
error and can be obtained via existing full integer pixel 
search algorithms. On the other hand, , +∈∀ Zk ( )kk qp ,  is 
the fine shift within [ ] [ ]1,11,1 −×−  around ( )kk qp ,0,0 ,  and 
the values of  and  could be either rational or 
irrational. If the motion vector moves in different 
directions, then different pixels are required for 
interpolations.  and 
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III. 

]

DERIVATION OF OPTIMAL MOTION VECTOR 
The objective of the block matched motion estimation 
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Since the global minimum of the mean square error is 

not necessarily located at rational pixel locations, while 
the full integer pixel search, full half pixel search and full 
quarter pixel search algorithms only evaluate at rational 
pixel locations, the mean square errors based on these 
conventional methods are very large and these 
conventional methods are very ineffective. On the other 
hand, our proposed method guarantee to find the motion 
vector that globally minimizes the mean square error no 
matter the motion vector is located at either rational pixel 
locations or irrational pixel locations. Hence, our proposed 
method is more effective that conventional methods. 
Besides, as integer pixel locations, half pixel locations and 
quarter pixel locations are particular locations represented 
by our proposed model, the mean square error based on 
our proposed method is guaranteed to be lower than that 
based on these conventional methods. 

The computational effort of our proposed algorithm can 
be analyzed as follows. As the orders of the polynomials 
in (1), (2) and (3) are 5, 4 and 2, respectively,  

. Hence, , if , then the maximum 
evaluation points of our proposed method are less than or 
equal to 21. , if , as the maximum 
number of points in  is 5, the maximum evaluation 
points of our proposed method are less than or equal to 17. 
For full quarter pixel search algorithms, there are 25 
evaluation points. Hence, the total number of evaluation 
points of our proposed method is lower than that of full 
quarter pixel search algorithms. As conventional block 
matched motion estimation algorithms evaluate block 
matching errors from coarse pixel locations to fine pixel 
locations, the computational efforts grow exponentially as 
the pixel precisions get finer and finer. From this point of 
view, the conventional methods are very inefficient. On 
the other hand, our proposed method does not require 
searching from the coarse pixel locations to the fine pixel 
locations. Our proposed method is more efficient than the 
conventional methods particularly when the required pixel 
precision is higher than or equal to the quarter pixel 
precisions. 
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IV. SIMULATION RESULTS 
In order to have complete investigations, video 

sequences with fast motion, medium motion and slow 

motion are studied. The video sequences, Foreman, 
Coastguard and Container [7], are, respectively, the most 
common fast motion, medium motion and slow motion 
video sequences. Hence, motion estimations are 
performed to these video sequences. Except the first frame 
of these video sequences, the mean square errors of all the 
frames of these video sequences are evaluated. Each 
current frame takes its immediate predecessor as the 
reference frame. The sizes of the marco blocks are chosen 
as 88×  and 16 16×  and the sizes of the search windows 
are chosen as 32  and , which are the most common 
block sizes and window sizes used in international 
standards. The comparisons are made with the full integer 
pixel search algorithm, the full half pixel search algorithm 
and the full quarter pixel search algorithm. 

40

The mean square error performances of our proposed 
method, the full integer pixel search algorithm, the full 
half pixel search algorithm and the full quarter pixel 
search algorithm with the size of the marco blocks 8 8×  
and the size of the search windows 32  applied to the 
video sequences Coastguard, Container and Foreman are 
shown in Figure 1a, Figure 1b, and Figure 1c, respectively. 
It can be seen from the Figure 1 that the improvements on 
the average mean square errors of the full half pixel search 
algorithm, the full quarter pixel search algorithm and our 
proposed method over the full integer search algorithm for 
the video sequences Coastguard are 1 , 

 and , respectively, which 
correspond to 17 ,  and , 
respectively, that for the video sequences Container are 

,  and , 
respectively, which correspond to 1 , 4  and 

, respectively, and that for the video sequences 
Foreman are 1 ,  and 

, respectively, which correspond to 
,  and , respectively. 

Similar results are obtained for different size of marco 
blocks and different size of the search windows. Figure 2 
shows the improvements on the average mean square 
errors of various algorithms with the size of the marco 
blocks 
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improvements on the average mean square errors of the 
full half pixel search algorithm, the full quarter pixel 
search algorithm and our proposed method over the full 
integer search algorithm for the video sequences 
Coastguard are 1 ,  and 

, respectively, which correspond to 
,  and , respectively, that 

for the video sequences Container are 1 , 
 and , respectively, which 

correspond to 0 ,  and , 
respectively, and that for the video sequences Foreman are 

,  and , 
respectively, which correspond to 21 ,  
and , respectively. From the above computer 
numerical simulations, it can be concluded that the mean 
square error performances of our proposed method are 
always better than the full integer pixel search algorithm, 
the full half pixel search algorithm and the full quarter 
pixel search algorithm for all of the above three video 
sequences. In particular, for slow motion video sequences, 
such as the video sequence Container, our proposed 
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method significantly outperforms the full integer pixel 
search algorithm, the full half pixel search algorithm and 
the full quarter pixel search algorithm. This is because the 
globally optimal motion vectors for these slow motion 
video sequences are very close to the origin and far from 
the half pixel locations and the quarter pixel locations. In 
this case, the full half pixel search algorithm and the full 
quarter pixel search algorithm would not yield very 
significant improvements over the full integer pixel search 
algorithm. On the other hand, our proposed method could 
solve the globally optimal motion vectors with very high 
pixel precisions and hence yields very significant 
improvements. 
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Figure 1. The mean square error performances of our proposed method, 

the full integer pixel search algorithm, the full half pixel search algorithm 
and the full quarter pixel search algorithm with the size of the marco 

blocks  and the size of the search windows 32  applied to the video 
sequences Coastguard, Container and Foreman. 
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Figure 2. The mean square error performances of our proposed method, 

the full integer pixel search algorithm, the full half pixel search algorithm 
and the full quarter pixel search algorithm with the size of the marco 

blocks 1616×  and the size of the search windows 40  applied to the video 
sequences Coastguard, Container and Foreman. 

V. CONCLUSION 
A nonlinear block matched motion model is proposed 

in this paper. The motion vector which globally minimizes 
the mean square error is solved analytically. Hence, a 
motion vector with an infinite pixel precision is obtained 
at a single step. As integer pixel locations, half pixel 
locations and quarter pixel locations are particular 
locations represented by our proposed model, the mean 
square error based on our proposed method is guaranteed 
to be lower than that based on these conventional methods. 
Also, as our proposed method does not require searching 
from coarse pixel locations to fine pixel locations, our 
proposed method is more efficient than conventional 
methods particularly when the required pixel precision is 
higher than or equal to the quarter pixel precisions. 
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