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Abstract—This paper proposes a non-linear block matched
motion model with motion vectors having arbitrary pixel
precisions. The optimal motion vector which minimizes the
mean square error is solved analytically in a single step. Our
proposed algorithm can be regarded as a generalization of
conventional half pixel search algorithms and quarter pixel
search algorithms because our proposed algorithm could
achieve motion vectors with arbitrary pixel precisions. Also,
the computational effort of our proposed algorithm is lower
than that of conventional quarter pixel search algorithms
because our proposed algorithm could achieve motion
vectors in a single step.

. INTRODUCTION

Motion estimations play an important role in motion
tracking applications, such as in a respiratory motion
tracking application [1] and in a facial motion tracking
application [2]. The most common motion estimation
algorithm is the block matched motion estimation
algorithm [3]. The current frame is usually partitioned into
numbers of macro blocks with fixed or variable sizes.
Each macro block in the current frame is compared with a
number of macro blocks in the reference frame translated
within a search window. Block matching errors are
calculated based on a predefined cost function. The macro
block in the reference frame that gives the minimum block
matching error is considered as the best approximation of
the macro block in the current frame. Each macro block in
the current frame is represented by the best macro block in
the reference frame, the motion vector (the motion vector
is the vector representing the translation of the macro
block in the reference frame.) and the residue (the residue
is the difference between the macro block in the current
frame and the best translated macro block in the reference
frame).

The most common block matched motion estimation
algorithm is the full integer pixel search algorithm. The
full integer pixel search algorithm is a centre based
algorithm in which all integer pixel locations in the search
window are examined. However, the motion vectors are
not necessarily represented by integer pixel precisions and
a large portion of macro blocks in the current frame are
best approximated by the macro blocks in the reference
frame translated within a plus or a minus one pixel range

around integer pixel locations. Hence, block matching
errors could be further reduced if motion vectors are
represented by non-integer pixel precisions. Conventional
non-integer pixel search algorithms start searching pixels
at half pixel locations. Half pixels are interpolated by
nearby pixels at integer pixel locations. Block matching
errors at some or all half pixel locations are evaluated. The
half pixel location with the minimum block matching
error is chosen. Similarly, quarter pixels are interpolated
by nearby pixels at half pixel and integer pixel locations.
The quarter pixel location with the minimum block
matching error is chosen. Finer pixel locations could be
evaluated successively. Since the block matching errors at
finer pixel locations are evaluated via interpolations from
the coarser pixel locations, if motion vectors with very
fine pixel precisions are required, then many pixel
locations are required to be evaluated. Hence,
computational efforts of these algorithms are very heavy
and these algorithms are very inefficient. Also, existing
pixel search algorithms could only achieve motion vectors
with rational pixel precisions. If the true motion vector is
with an irrational pixel precision, then an infinite number
of pixel locations have to be evaluated.

Interpolations are implemented via some predefined
functions, such as a real valued quadratic function with
two variables [4], a paraboloid function [5] and a straight
line [6]. As the block matching error is a highly non-linear
and non-convex function of the motion vector, it is very
difficult to solve the motion vector that globally
minimizes the block matching error. Hence, many pixel
locations are still required to be evaluated and the pixel
location with the lowest block matching error is chosen.
Similar to conventional quarter pixel search algorithms,
computational efforts of these algorithms are still very
heavy and these algorithms are still very inefficient. Also,
if the true motion vector is with an irrational pixel
precision, then an infinite number of pixel locations still
have to be evaluated.

In this paper, we propose a non-linear block matched
motion model with motion vectors having arbitrary pixel
precisions. The optimal motion vector which minimizes
the mean square error is solved analytically in a single
step. Our proposed algorithm has the following salient
features. 1) The block matching error is evaluated in a
single step which globally minimizes the mean square
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error. As the calculation of the mean square error at a fine
pixel location is not derived from the coarser pixel
locations, the computational effort of our proposed
algorithm is much lower than that of conventional quarter
pixel search algorithms. 2) Our proposed algorithm could
achieve the true motion vector even though the true
motion vector is with an irrational pixel precision.
Computer numerical simulations show that the mean
square errors of various video sequences based on our
proposed algorithm are lower than that based on
conventional half pixel search algorithms and quarter
pixel search algorithms. The rest part of this paper is
organized as follows. Section Il describes our proposed
non-linear block matched motion model. Section Il
derives analytically the optimal motion vector which
minimizes the mean square error. Computer numerical
simulations are presented in Section IV. Finally, a
conclusion is drawn in Section V.

Il.  PROPOSED NON-LINEAR BLOCK MATCHED
MoTION MODEL

Denote the size of a macro block as NxN , where
NeZ*. vkeZ*, let B, be a macro block in the k+1"

current frame and B, ,(x, y) be the pixel value of B,_, at
the pixel location (x,y)  vxel{0,---,N-1} and
vye{0,---,N-1}. Similarly, vk eZ*, let B, be a macro
block in the k " reference frame and B, (x, y) be the pixel
value of B,_at the pixel location (x,y) vxe{0,---,N -1}
and vy e{0,---,N-1}. Vk e Z*, denote the motion vector
of B as (po‘k+pqu0,k+qk)’ where (po,kf%,k)ezz and
(po G )e[-11x[-11] - VkeZ", (p,,.q,,) IS the best

integer pixel location which minimizes the block matching
error and can be obtained via existing full integer pixel
search algorithms. On the other hand, vk e Z*, (p,,q,) IS

the fine shift within [-11]x[-11] around (p,,,q,,) and
the values of p_and g could be either rational or

irrational. If the motion vector moves in different
directions, then different pixels are required for
interpolations. vk eZ* and v(p,,q,)e[01]x[01], denote
|§¢’; o 88 the translated block of B_if the motion vector
moves in the upper left direction, EikURp . 88 the translated
block of B, if the motion vector moves in the upper right
direction, EikL; . @S the translated block of B, if the

motion vector moves in the lower left direction, and
§k”; . 8S the translated block of B, if the motion vector
» P Ok

moves in the lower right direction. vkez® ,
v(p,.q.)e[01]x[0]] : vxe{0,---,N -1} and
VyE{OY“.’N_:I'} denOte B‘:J.:kv% (X’ y) ! Bkuik Qk( ’y) !
BkLl;qu( x,y) and BkLF; N (x,y) be the pixel values of
BkU:k 0 BEF; o BkL; N and kaf)k,qk at the pixel location
(x,y) . respectively. In this paper, vkeZ® ,
v(p..q)el0lx[o1] vxe{0,---,N -1} and

Vye{

and BKLF; o

4N _1} BIEJIIJk qk( ) y) BltJF:)k qk( 7y) BkLl;)k qk( 7y)
(x, y) are constructed via the following models:

BkUI;_Jk qk( )E(l_ pk)(l_qk)Bk(X+ po,k’y+q0,k)
+(- pk)quk(X+ Po.x +1’y+q0,k) ,
+p(L-q,)B, (X * Pox: Y+ ok +1)
+ PGBy (X + Doy 1Y +0g +1)
BkUF;k qk( ) y)E (1_ Py )(1_qk )Bk (X"" Pox- Y+ qO,k)
(1_ pk)quk(X+ Pox +1ry+qo,k) !
+p(L-q,)B, (X * Poy: Y +Uok _1)
+ PGBy (X + Pog +1 Y+ 0oy _1)
BkL;k % (% y)=-p N2~y )By (X * Poxr Y +Uox )
+(- P o By (X + Pox =LY+ 0oy )
+p(L-q,)B, (X * Poxs Y+ Uok +1)
+ DBy (X+ Py —1 Y+ 0 +1)
and
BkLF;k qk( y)=(-pNL-a,)B, (X+ po,k’y""qo,k)
+(1- pk)quk(X+ Pox _1'y+q0,k) '
+ P 1=, )B, (x+ Py, y + oy —1)
+ PGBy (X+ Pos —L Y + 0oy _1)
respectively. vk e Z* and v(p,,q, )e[-11]x[-11], let the
mean square error between the translated B, and B, be

MSEk(pquk) That is, vkeZ* and
v(p,. g ) e [~11]x[-14].
1 N-1N-1 )
Wx 0o 0‘ k‘pquk‘(X y) k+1(xﬂ YX y
1 NN~ ,
WZZ‘BkY\mm(Xv ¥)-Balxy)
VSE, (50 =min] 507
1 NN ,
WZZ‘BK‘WHQK‘(X y)_ Bk+1(xv yw ,
x=0 y=0
1 N-IN-1 __ )
N Bef, o, (6 Y)-Bia(xy)
x=0 y=0
It Is wort noting that

(- p)L-a)+ p(L-a)+(-p o, + PG =1
and v(p,,q, )<[0,1]x[0,1]. Hence, the average intensity of
BkU;k W BkUF; @ BkL: o, and ékLYF;Mk will not be boosted up

or attenuated down vk e Z* and v(p,,q, ) [0,1]x[0,1]-

If the true motion vector is located at the integer pixel
locations, then it is obvious to see that p =g, =0, Or

p,=0and g =1,0r p =1and g =0, or p, =q, =1. If

the true motion vector is located at the half pixel locations,

then it is obvious to see that p, =0 and g - 1or P _1
2

2
and g, =0,0r p = and g, =1,0r p,=1and g 1 or
2
- :,. If the true motion vector is located at the
Py =0y 5

quarter pixel locations, then it is obvious to see that

1 3 1 1
P =0 = ,,orp_zand qk:Z,or b, = ,and



qk:§,or P =0, = ,,or pk—oandq_,,or p, =0

4
andq_ﬁ,orp_landq_,,orp_landq_ﬁ
4
or pk:,anquzo,orp:Zanqu:o,orp:Z
anqu:1,orp_ and g, =1, orp_ andq_l
4 4
1 1 1 3
orp_,andq_,,orp andq_,,or Pe=",

and q, ZE. Hence, integer plxel locations, half pixel
2

locations and quarter pixel locations are particular
locations represented by our proposed model.

I1l.  DERIVATION OF OPTIMAL MOTION VECTOR

The objective of the block matched motion estimation
problem is to find (p,q,)e[-11]x[-11] such that

MSE, (p,,q,) is minimized VkeZ® . vkez® and
v(py. 0 ) € [01]x[0.1], denote

MSE" (.. 0 )

(L py )(l_qk)Bk(X+ Poxs y+q0,k)
1 +(-py )quk(X+ Pos +1, y+q0,k)

N? + Py (1_qk)Bk(X+ Pok: Y+ ok +1)

+ P9, By (X + Pox +L Y+ 0o +1)_ Bk+1(xv y)

(- p)L-a, B, (x+ Py, Y +y)

_ 1y BB X+ Poy +1 Y+ )
NZ S5 + P -0, B, (x+ Poye, Y+ oy —1)

+ PGB (X Poy +1 Y+ Go —1)- By (X, Y)

MSEkLL(pkvqk)

(L— P LG B (X + Py, Y+l )

1 U= 1 Py qk (X+p0,k_11y+q0,k)

WOVZ; +pk(1 A By (X+ Py, Y + oy +1)
+ P9 B k(x+ Pox —L Y+ oy +1)_ BM(X, Y)

2

and

MSE." (P, a)

(1 pk)(l A )B, (X + Py, Y+ 0oy )
138+ (1= p B (x+ poy —1 Y+ )
W2 na -

N == +pk( QK) X+ Poyr Y+ o

+paB k(x+ Pox —1 Y +0gy _1)_ Bk+1(X1 y)
Then vkeZ* and v(p,,q,)e[01]x[0,], we have

‘ =
z
N
z
N

This further

P

+By\x p0k1y+q0k)

Bk(x+p0kvy+%k)
— B, (X+ Posc Y+ Qo +1)
-B X+p0,k+lly+q0,k)
Bk x+p0k+1 y+q0k+1)
[ X+ p0k1y+qu+1)]
kX+p0k y+%k)
Bk(x+p0k+1y+q0k)
( Bk(x"‘powy"’%k)J
(x+ B (x,y)

implies that vkeZ”

v(p,. g, )e01]x[0.1],

OMSE," (p,, q,)
op,

+ k(X+ Pos Y+ ok +1)

O+ Do ¥+ i)
_B X+p0kvy+qok+1)
_B X+p0k+1y+q0k)
+B, x+p0k+1y+q0k+1)
(B X+p0kly+q0k+1)J
(X+ Pos Y+l
(B X+ Poy +1, y+q0k)J

(X+ Poser Y+ o)

+Bk(x+ p0kvy+q0k) Bk+1(xvy)

Nzxzoyzo {Bk(x+ p0k7y+q0k)
B

-B,

~B(X+ Py ¥ + 0o +1)
- Bk(x+ Pox +1 y+q0‘k)
+B, (X+ Pox 1 Y+ 0o +1)

k(x+ po,ka"'Qo,k)

Bk(x+ po,k1y+q0‘k)

- Bk(x+ Po,cr Y+ ok +1)

- By (X+ Pos +1 y+q0,k)

+ B, (x+ Pox +1 Y+ 0y, +1)
Bk(x+ Pox: y+%,k)
=B, (x+ Py Y + U +1)
—Bk(x+ Po +1,y+q0,k)

+ Bk(x+ Pox +L Y+ +1)

(Bk(x+ Poxs Y+ 0o +1
B

- B, (x+ po,k.y+qo,k))J




=t 2 Bk(X+ Po: Y+ 0ok +1) ’

S N? (_ Bk(x+ po,k1y+qak) J
Bk(x+ Pox +1, y+q0vk)

( Bk(x+po‘kly+q0,k)j

X+ Doy Y+ o)

¥=0 y=0 Bk(X+ Pox+ Y+ ok +1)
Bk(x+p0k+1 y+q0k)

+Bk X+ Poy +1, y+q0k+1)

(Bk X+ Poso ¥+ oy +1)

z
iR
z
iR
us)
=~
—_

Bk X+ Por y+qok)
B X+ Pox +1, y+qu)

~ B (x+ Py, Y+ G5i)

By (X+ Po. y""%,k)
Bk(x+ Pox: Y+ ok +1)

- Bk(X+ Pox +1, y+qo,k)

+ Bk(x+ Pox 1Y+ +1)

(Bk (X+ Pos: ¥+ ok )_ Bk+1(X' Y))

2
N-1 N—lW(Bk (X+ Pok: Y T ok )_ Bk+1(x’ y))

Xx=0 y= O(B (X+ pok Y+qu+1) B (X+ p0,k1y+q0,k))
vk e Z", denote

+

2

Bk(x+ pO,kly+q0,k)
- Bk(X+ Poks Y+ ok +1)

NAIND 9
c ,= —
k.pa x:O;NZ _Bk(x+p0,k+1ly+q0,k)

+B, (x+ Pox 1Y +0do +1)

Bk(x+ pO,k’y+q0,k)

4 _BK(XJ" Pox: Y+ ok +1)
N? _Bk(x+ Pos +1 y+q0,k)
par o + B, (x+ Pox LY+ 0ok +1)

X+ Py Y+ 0o +1)J

k(x+ p0k7y+q0,k)
N-IN 12(8k X+ poyk,y+q0'k+1)]2,
Bk(X+ po,k'y+q0,k)

2 BK(X+pO,K+1ly+q0,k)
[ Bk(X+p0,k’y+q0,k)J
X+ Posc Y+ oy )
k(X+p0k y+%k+1)
k(x+p0k+1y+qok)
k(X+ Pox +1 Y+ +1)

/H\
o
CD —_

z
iR
=z
N
vs)
=~
—_

WUJW

(BK(H Poss Y + o +1)]

_Bk(X"’ pO,k'y+q0,k)

(Bk (X+ Pox 1Y + 0oy )J

_Bk(X"’ pO,kvy+q0,k)

G 2
Cug = o yzom B, (X+ Pox: Y+ qO,k)
i Bk(x+ Pok: Y+ 0ok +1)
- Bk(x+ Po +1, y+q0,k)
+B, (X+ Pos +1 Y+ 0oy +1)
(Bk (X+ Poxs Y+ ok )_ Bk+l(x’ y))
and

2
‘= ”*lgm(Bk (x+ Do ¥ + o)~ Bus(x, )

x=0 y=0 (Bk (X"' Pox: Y+ ok +1)_ By (X+ Po,k s y+qo‘k))
Then, vk eZ* and v(p,,q, )< [01]x[01], we have
OMSE" (py, o)
op,
_ ( 2 ) 2
= PilCy 2+ CiepgOic +Cijp JH €y 2 Ui + Gy gl + G
Similarly, vk e Z* and v(p,,q, )< [04]x[0.].
0oq,
Bk(X+ Po: Y‘*‘%k
Bk X+ Doy ¥+ 0ok +1)
Bk X+ Poy +1, y+%k)
Bk X+ Py +1 Y+ 0o “'1)

B, X+ Pos: y""qok‘*‘l)J

P Ak

B X+ Pox y+%k)
Bk X+ Poy +1, y+%k)
[ X+ Po. y+qu)J
FREIE +Bk(><+p0k Y+ o)~ Bea(x,y)

By (X+ Py, Y + )

_Bk(x+p0,k'y+q0,k +1)

- Bk(x+ Po +1, y+q0,k)

+ B, (X+ Pox +1 Y+ +1)
+ B, (x+ Pox +1, y+q0,k)
Bk(x+ pO,k1y+q0,k)

Bk(x+ po,k,y+qo,k)
NN o | — Bk(X+ Pox: Y+ ok +1)
N2 | = Bk(x+ Pox +1, y+%,k)
+ B, (X+ Pox +1 Y+ +1)



Bk(x+ po,ka"’Qo,k)

4 |- Bk(X"’ Poxs Y + 0ok +1)
N _Bk(X"’ pO,k+1’y+q0,k)
%20 y=0 +Bk(x+ Pox +1:y+%,k+l)
K \X+ pO,k+11y+qO,k)J
k(X+p0,kly+q0,k)

N\
| W
W m

+q G 2 ( k(x+p0,k+1'y+q0,k)]2
kx:Oy:ONz _Bk(x+p0,k1y+q0,k)
2 (Belx+ Py Y+, +1)
Nz( Bk(X+po,k,y+qo,k)J
= Bk(X+ pO,kly+q0,k)
P22 B (o by + Gy 1)
Bk(x+ Po +1ly+q0,k)
+ Bk(x+ Pox 1 Y+ 0oy +1)
Bk(x+ Poxs Y+ 0ok +1)
{_ Bk(x+ pO,k’y+q0,k)
[Bk(x"‘ Pok +1’y+q0,k)
ST _Bk(x+p0,k'y+q0,k)
+ Py ~ :OW Bk(X+p0,k'y+q0,k)
X0y

_Bk(x+ Pos: Y + ok +1)
4
_Bk(x+ Po. +1ly+q0,k)
+ Bk(x+ Pox +1 Y+ +1)

(Bk (X + Posr Y+ 0ok )_ Bk+1(xl Y))

+Nzljzl ( (X"" pOk’y+q0k)_ Bk+1(x’ y))

i (B (X+ p0k+ly+q0k) B(X+p0,kly+q0,k))
vk e Z*, denote

B, (X"" Po s y+qO,k)
I 2 |~ B Po Y+ a0 +1) |
=0 y:OW _Bk(X"" Po.x +1vy+q0,k)

+ Bk(x+ Pox +1 Y+ g, +1)

>

Bk(x+ po,k’y+q0,k)
4 _Bk(x+ Poxs Y+ 0ok +1)
v N2 _Bk(X"" Pox +1, y+qo,k)
%20 y=0 +Bk(x+ Pos +1 Y+ 0oy +1)
X+ Py +1Y+0y, )
~B,(x+ p0k,y+q0k)J
2[Bk (X+ Po, +1 Y+ 0oy )JZ ,

Bk(x+ Pos Yt %,k)

| /ﬁ
o
=~
—

2 Bk(x+p0,kly+q0,k+1)
[ Bk(x+p0,kvy+qo,k)J
AN Bk(X+p0kiy+q0k) '
Bk(x+p0k y+qu+1)
Bk(x+p0k+ly+q0k)
B

+B, (X4 Py +1 Y+ 0o +1)

Bk(x+p0k y+q0k+1)
( Bk X+ pOk’y+q0k) J

Bk(X+p0k+1y+q0k)
( Bk X+ po,k:Y"‘Qo,k) J

Bk(X+ po,k1y+q0,k)

_Bk(x+po,k-y+qo,k +1)

- Bk(x+ Po +1, y+%,k)

+B, (X+ Pox +1 Y +0y, +1)

(Bk (X *+ Poxr Y+ ok )_ Bk+1(xl Y))

~N
=
>
1l
>H< =2
S} iR
‘ﬁ =z
S iR
Zlro
o

2
7, = NflEW(Bk (X+ Pox: Y+ qO,k)_ Bk+1(xl Y))
y

- (Bk (X + Pox +1 Y + 0o )— B, (X + Poyr Y + Aok ))
Then vk e Z* and v(p,,q, ) [01]x[01], we have
aq,
= O (Zk'qu PE o+ Zeap Prc + Zig )+ L P+ Zip P+ 2
vk eZ*, denote a stationary point of MSEEL(IOK ’ qk) as
(pk qt’L*) Then, vk e Z*, we have

OMSE" (py. G, ) 0
Py (- )=(p¥ a2)
and
OMSE" (P, 0, _o-
o (pe-ai)=(p8 )

If 3k € Z* such that Co o #00rc . #00rc #0, then

UL=* UL#*
we have po _ Cogd ™ Gl TG ang
e _

UL#2 UL+
Copdc TCpqlk +Ccp
uL»2 UL* 2
. Y R T
k.ap? UL#2 ULs
UL* Ckyquqk +Ck,pqqk +Ck,p

O
uL»2 UL*
Code Ot +C
T lap| 2 g

UL+ UL
Ckypq2qk +Ck,pqqk +Ck,p
uL»2 UL= 2 )
Colc O +C
+ Zk,pz B Y uL#2 UL
Ckypqzqk +Ck,pqqk +Ck,p

uL#2 UL*

Colc OO +C 0

+ Zk,p — oz o +Z, =
Ck'pQqu +Ck,pqqk +Ck,p




which further implies that

7 UL#2
(
k,qp k q2 k

UL#2 UL*
UL* qup(kqiqk +quqk +Ck)

o)
u? e e
Cy a2k k,pqqk K.p

UL=
+C, 40 +ck)2

UL+2

UL=
+qu(kpq2qk +Ck pqqk +Ck,p)z

UL#2

UL=
+zkyp(quqk +C, oy +(:k)2

1)
uL#2 ULx*
ka(k 20+ Gy gl +Ck)
UL* ULx*
( ek T Cipg +Ck,p)
uLx2 UL=*
+zk( O G pl +ckyp)2 =0

If 3kez” such that Cy pat -0 and Cpg =0 and Cip =0,

but Zk,qu;to or z,,#0 O 7, =0, then we have
uL#2

ULs _ Lo 2 P
=

UL=
+Z P I and

uL#2

k ap? Py + Zk,q

uL
+ Zk,qp pk
uL#2
Zy 2 Pk

ka?| UL#2
k qu pk

UL
TP T4

UL
+ Zk,qp pk + Zk,q 1

*

uLx2 UL*
L 2P TP 7

uLx2
2y o2 P

which further implies that

+Ck,q -

+c, =0
UL

2P 2

uL#2
Ck,q ( k,p? Py
UL*

qu kp2pk

UL=*
+Z P+ Zk)2
UL*
o) @
UL=
( kqu Py +Zk~Q)
UL*

+quppk
+Ck( kqu Py +quppt"'*+zk'q)z:0
If 3k eZz* such that Co o =0 and Cpg =0 and C.p =0

UL*2

and ; —pand z , =0 and z, =0, then we have
k.ap® ka ka
: qzqt’“ +C, 40 +C, =0 (32)
and
Z, . z, ,po? +2,,p +2,=0- (3b)

By solving (1) or (2) or (3), (p,q*) can be found
vkeZ*. vkezZ", denote the total number of vectors
(p2,qe) within [o1]x[o1] as MY . vkez® , if
MU >1, then denote those vectors as (pU+,qUt) for
m=12,--,M*  and R ={(plhaly) for
m=12,---,M*}U{(0,0)}-

However, in general it is not guaranteed that M- >1
vkez".If 3keZ” suchthat M =0, then there may be

no stationary point or the stationary points are not in the
feasible region [0,1]x[0,1]. For these two cases, the global

minimum of the MSEEL(pk,qk) could be on the

denote

boundaries of the feasible region. Hence, it is required to
check if there exist some stationary points on the
boundaries of the feasible region. The following
procedures are employed for the checking. vk e Z* and

vq, €[0.1],

MSE" (0,4

(L- pk)(l_qk)Bk(X+ Po y+q0,k) i
1 v +(- pk)quk(X+ Pos +1, y+q0,k)
WX:O . + pk(l_qk)Bk(X+ Pok: Y+ ok +1)
T+ pquBk(X+ Pox +1 Y+ oy +1)
_Bk+1(Xl Y)
p=0 )
1 (0B, [+ poyy +y,)

2
N = im( +aBy (X+ Pox +1, y+%,k)_ Bia(X, Y)J
1w [Bk(x+ Pox +1, y+q0,k)j i

W ‘ _Bk(x+p0,k’y+q0,k)

Bk+1(X1 y)

Z
N

I}
o

x=0 y:

+ Bk(x+ Pox: y+qo,k)_

This implies that vk e Z* and vq, <[04],
OMSE/*(0,q,)

aq,
q Bk(x+po,k+1vy+%,k)
‘ Bk(x+p0k1y+q0k)
2 N-1N-1
"N +B, (X+ Poy Y+ Uos )~ B (X, Y)
x=0 y=0

v [Bk(x+ Pox +1 y+%,k)j
_Bk(x+ po,kly+qo,k)

q (Bk(x+ Pox +1, y+qak)]2
. k B (X+ pokly+q0k)
+ X+ pOk,y+qu) Bk+l(x’y))

y
X+ Pox +1 y+%k)
X+ p0k1y+qok)

Z

-1

Z

2
TN?

I}
o
Il
o

vk e Z*, denote

L 2 (B X poy Ly + )
N? { Bk(x+p0‘kly+q0‘k)J

and

(Bk (X + Poxr Y+ 0ok )_ Bk+1(X1 Y))

[Bk(x+ Pox +17y+%,k) '

_Bk(X"’ pO,k'y+q0,k) J

then vk e Z* and vq, <[01] we have

OMSE(0,q,)

=C 040k +Cio"
oq,

vkez*, denote a stationary point of MSE(0,q,) as
( akaUL) If 3kez® such that g . =20 , then



OMSE(0.0,))  _ implies that gou __Ceo . If
aQk g =gou Ck,O‘q

this value is in the feasible region, that is 3k € Z* such

that Coog #0 and _ fk,o o] then this stationary point

Ck‘O,q
could be the global minimum. For this case, define

ck 0,9
could be happened. (Case i) This stationary point may be
outside the feasible region, that is 3k ez* such that
G0 #0 and _fk‘o ¢[04]- (Case ii) Ik ez* such that

ck,O,q

Cooq =0 and ¢ ,=0. Then, 3keZ" such that all the
points on the boundary p, =0 vg, <[0,1] are stationary

Fut ={0— Co J . However, the following three cases
k,0,g —

points, that is Jkez® such that 5MSEEL(O,QK):O
aq,

vq, €[01] . (Case iii) 3kez” such that €0q=0 and

C.o#0. Then, 3keZ" such that there is no stationary

point on the boundary p, =0 Vg, €[0,1], that is 3k e Z*

such that 5'\/'5'5;(0,%) 40 Vq, €[0,1]. For all these three
k
cases, we do not consider that the global minimum is on

the boundary p =0 vg, €(01]. For these three cases,
define |5k‘{;q =¢, where ¢4 is denoted as the empty set.

Similarly, vk e 2* and vq, €[0,].

MSE." (1., )

(- P -6 B, (x+ Posy+ 0oy ) )
+(1-p,) kBk(X+ Pox +17y+q0,k)
+ pk(l_qk )Bk(x+ Pok: Y+ ok +1)
+ pquBk(X+ Pox +1 Y+ o +1)
~By.(x.y)

p=1
1 (-8, (¢ Py y + oy +1) 2
N? & v\ +0, B, (X+ Pox 1Y+ 0o +1)_ Bk+1(x' y)
1 NNa k(Bk(X"' Pox +1 Y+ +1)J
= By (X+ Py, Y+ G +1)
x=0 y=0

+By (X + Por Y+ o "’1)_ Bk+1(x’ y)
This implies that vk e Z* and vq, [0,],

OMSE;" (L g, )
ogy
B, (X+ Pox +1 Y+ o +1)
k[_ Bk(x+ Pok: Y+ 0ok +1) J
+ B (X+ o Y+ Gy +1)- B (x,Y)
o Bk(x+ Pox 1 Y+ 0oy +1)
(_ Bk(x+ Pocr Y+ 0ok +1) ]

Z

-1

2N1

]
o

B, (x+ Py ¥+ oy +1) _
X+ Poxs Y+ ok +1) Bk+l(x' Y))
’ kx+p0k+1 y+q0k+1)

[ X+p0kly+q0k+1)J

[Bk (X + Pox +1 Y+ 0o +1)J2
A
-1

Z
Z

2 -1
TN? +

]
o

]
o

vk e Z*, denote

~ 2 (X+p0k+1 y+%k+l)
fra = I\ Z—E;Z—c;{ (X+ Pok: Y+ ok +1) ]
and
(Bk (X"' Poj: Y + o +1)_ Bk+1(x1 Y))
_ 9 NN
Ci=17

NZ

]
o

]
o

y

[Bk(x+ Pos +1 Y+ 0o, +1)J ’
B, (X+ Do ¥+ Qo +1)
then vk e Z* and vq, <[01] we have

OMSE(1,q,)

aq,
denote a stationary point of MSE’(1,q,) as

Cquqk +Ckl

vkeZ",
(Lg:). If 3kez* such that ¢, »0 and _fﬁe[o,l]'

Ck,l,q
then this stationary point could be the global minimum.

For this case, define gut ={[0— Ces J} However, if
k1,9 — 1 '6
k.1,

3k € Z* such that Crg #0 and _&

Ck‘l,q
then we do not consider that the global minimum is on the
boundary p, =1 vq, €[0,1]. For these two cases, define

FU =¢. VkeZ" and vp, e[04],

klq —

¢[04] OF Ey =0,

MSE(p,.0)

(1_ P« Xl_qk )Bk(x+ Po: y+%,k) ’
+(L- P ), B, (X+ Po +1, y+q0,k)
= +p(L-q, B, (X+ Pok:» ¥ + ok +1)
+ P9 By (X+ Pox +1 Y+ oy +1)

- Bk+1(x’ y)

iNlefl (1_ Py )Bk(x+ Pok: y""%,k)
N? = y=o\ + P By (X"" Po: Y+ ok +1)_

1 NN (Bk(x+ Poxs Y+ ok +1)]
k

=0
)
Bk+1(X' y)]

- Bk(x+ po,k: y+qo,k)
+ B (X+ Poy Y+ oy )~ B (%, )

This implies that vk € Z* and vp, [0.],



6‘MSEUL(pk, )

X+ p0kvy+qok+l)
X+ powy"'qok)

9 NN
W +B, X+ powY"’QOk) Bk+1(xly)
x=0 y=0
' ( (X+p0k’y+q0k+1)J
By (X+ Poscs Y+ o)
o [Bk (X+ Pox: Y+ ok +1)J2
S v B Pyt
_W + X+ powY"’on) k+1(XlY))
x=0 y=0

' X+p0k,y+qok+1)
(X Poyr Y+ 0o )
vk eZz*, denote
- 2 ¥ B(X+|00k-)’+%k+1)
Bk(x+ po,an"‘Qo,k)
and
(Bk (X+ Pox: Yt ok )_ Bk+1(xl y))
- 2 N-1
Lio="7% [Bk(x"' Pox: Y+ ok +1)j ,
_Bk(x+ po,ka"’Qo,k)
then vk e Z* and vp, [0,1] we have
OMSE™ (p, ,0)

Py
denote a stationary point of MSE’(p,,0) as

=Zyop Pt Zio

vkeZ',
(53&’0)_ If 3k e Z* such that Ze0p %0 and _?ﬂ e[0a]:

Zk‘O,p
then this stationary point could be the global minimum.

For this case, define gu. ={[_ Z, o 0} However, if
k,0,p — ~ ’

Zyo,p

Jkez" such that 7, -0 and _ Ly elog] » O

ZkOp
Zeop =0 then we do not consider that the global

minimum is on the boundary g, =0 vp, (0,1]. For these
two cases, define ﬁkuoLp =¢ . Lastly, vkez® and

vp, €[0.4],
MSE (p, 1)

(1_ pk)(l_qk)Bk (X"" Po y+q0,k) i
+(-py )quk(X+ Pox +1, y+q0,k)

+p(L-q,)B, (X+ Poxs Y + 0ok +1)

+ PG By (X+ Pox +1 Y+ o ""1)

- Bk+1(xl y)

Z
N

1N1

2
N x=0y

]
o

=1
(1_ pk)Bk (X+ Pox +1 y+q0,k)
+ Py By (X+ Pox 1Y+ +1)_

‘ =
z
N
z
N

Bya(X, y)jz

[N
>
]
o
<
]
o

B (x+ Pox 1 Y+ 0oy +1)
{ (x+ Py, +1y+0p,) ]
+B (X+ Pox +1, y+%,k)_ Bk+1(X, Y)
This implies that vk € Z* and vp, [0.],

iNlNl p

2
N x=0 y=0

oMSE" (p, 1)
P,
0 {Bk(x+ Pos +1 Y + 0oy +1)]
‘\- Bk(X+ Po +1, y+q0,k)

Z
N

2N1

2
N x=0y:

+By (X+ Pox +1, y+q0,k)_ Bk+1(xv Y)
B, (x+ Pox +1 Y+ 0o +1)
[_ Bk(x+ Pox +1ry+q0,k) J
pk[Bk (X+ Pox +1 Y+ o +1)J2
B(X+p0k+1 y+%k)
+(B,(x+ Py +1,y + 0y, )~ B (%, y))
’ x+p0k+1y+q0k+1)
[ X+p0k+1y+qok)J
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vk e Z*, denote

_ B 2 N-1N-1
Zk,l,p=

2
N x=0 y=0

By (X+ Pox +1 Y +0o +1)]2
- Bk(x+ Pox +1, y+q0,k)
and

Z
N
Z
N

(B (X+ Pox +1, y+%k) Bk+1(xly))
B(x+p0k+1 y+q0k+1) !

[ Bk(x+ Pox +1’y+q0,k) J

then vk e Z* and vp, <[0,1] we have

OMSE(p, 1) - -
(,;pk(m =2y Pt 4y

denote a stationary point of MSE(p,,1) as

7 2 2%

Zkl
B NZX

[I}
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Il
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vkeZ",
(pkUL 1) If 3k Z* such that Z,,, 70 and —f&e[o,l]'

Zk,l,p
then this stationary point could be the global minimum.

For this case, define pu. _J| _ Z,, 1|l . However, if
kilp — ’

Zk,l,p

JkeZ* such that Zo1, 20 and e[Ol]’ or

Zklp
Z1,=0 then we do not consider that the global

minimum is on the boundary g, =1 vp, <[0,1]. For these
two cases, define FU =g vkez® , define
F FkaLq U Fkuqu U FkaL p U Fkule U {(010)}'

Similarly, vk e Z*, denote the set of motion vectors
corresponding to the stationary points of MSE®(p,,q, ).
MSE*(p,.q,) and MSEF(p,,q,) (including the point
(0,0)) as F®, F- and F'®, respectively. The algorithm

for finding the globally optimal motion vector can be
summarized as follow:

Algorithm



Step 1: Implement an existing full integer pixel search
algorithm so that (p,,q,, ) is obtained vk e Z*.

Step 2: vkeZ”, evaluate F*-, F®, F- and F'F.
Step 3: vk e Z*, evaluate

arg{ min MSE pk,qk

(Peoax JeRet }

arg{( min _MSE(p,.q,)

Pt JeRT

(p;.a;)=arg

arg{ min MSE pk,qk}

(pr.ai JeREt

arg{ min., MSE,*(p,. qk)}

PG JeRET

vkeZ", take (p;,q;) as the globally optimal
motion vector of B, .

Since the global minimum of the mean square error is
not necessarily located at rational pixel locations, while
the full integer pixel search, full half pixel search and full
quarter pixel search algorithms only evaluate at rational
pixel locations, the mean square errors based on these
conventional methods are very large and these
conventional methods are very ineffective. On the other
hand, our proposed method guarantee to find the motion
vector that globally minimizes the mean square error no
matter the motion vector is located at either rational pixel
locations or irrational pixel locations. Hence, our proposed
method is more effective that conventional methods.
Besides, as integer pixel locations, half pixel locations and
quarter pixel locations are particular locations represented
by our proposed model, the mean square error based on
our proposed method is guaranteed to be lower than that
based on these conventional methods.

The computational effort of our proposed algorithm can
be analyzed as follows. As the orders of the polynomials
in (1), (2) and (3) are 5, 4 and 2, respectively, 0 <M <5

vkez". Hence, vkez",if M >1, then the maximum

evaluation points of our proposed method are less than or
equal to 21. vkeZz*, if M =0, as the maximum

number of points in FY- is 5, the maximum evaluation

points of our proposed method are less than or equal to 17.
For full quarter pixel search algorithms, there are 25
evaluation points. Hence, the total number of evaluation
points of our proposed method is lower than that of full
quarter pixel search algorithms. As conventional block
matched motion estimation algorithms evaluate block
matching errors from coarse pixel locations to fine pixel
locations, the computational efforts grow exponentially as
the pixel precisions get finer and finer. From this point of
view, the conventional methods are very inefficient. On
the other hand, our proposed method does not require
searching from the coarse pixel locations to the fine pixel
locations. Our proposed method is more efficient than the
conventional methods particularly when the required pixel
precision is higher than or equal to the quarter pixel
precisions.

IV. SIMULATION RESULTS

In order to have complete investigations, video
sequences with fast motion, medium motion and slow

motion are studied. The video sequences, Foreman,
Coastguard and Container [7], are, respectively, the most
common fast motion, medium motion and slow motion
video sequences. Hence, motion estimations are
performed to these video sequences. Except the first frame
of these video sequences, the mean square errors of all the
frames of these video sequences are evaluated. Each
current frame takes its immediate predecessor as the
reference frame. The sizes of the marco blocks are chosen
as 8x8 and 16x16 and the sizes of the search windows
are chosen as 32 and 40, which are the most common
block sizes and window sizes used in international
standards. The comparisons are made with the full integer
pixel search algorithm, the full half pixel search algorithm
and the full quarter pixel search algorithm.

The mean square error performances of our proposed
method, the full integer pixel search algorithm, the full
half pixel search algorithm and the full quarter pixel
search algorithm with the size of the marco blocks 8x8
and the size of the search windows 32 applied to the
video sequences Coastguard, Container and Foreman are
shown in Figure 1a, Figure 1b, and Figure 1c, respectively.
It can be seen from the Figure 1 that the improvements on
the average mean square errors of the full half pixel search
algorithm, the full quarter pixel search algorithm and our
proposed method over the full integer search algorithm for
the video sequences Coastguard are 1.4894x107* ,
2.2242x10* and 2.7294x10™* , respectively, which
correspond to 17.8531% , 28.8039% and 37.5835% ,
respectively, that for the video sequences Container are
1.4406x10° , 3.6476x10° and 2.0374x107°
respectively, which correspond to 1.0115%, 4.4170% and
32.3070%, respectively, and that for the video sequences

Foreman are 1.5788x10* , 2.2863x10* and
2.5897x10* , respectively, which correspond to
24.7674% , 39.1977% and 46.4394% , respectively.

Similar results are obtained for different size of marco
blocks and different size of the search windows. Figure 2
shows the improvements on the average mean square
errors of various algorithms with the size of the marco
blocks 16x16 and the size of the search windows 40
applied to the same set of video sequences. The
improvements on the average mean square errors of the
full half pixel search algorithm, the full quarter pixel
search algorithm and our proposed method over the full

integer search algorithm for the video sequences
Coastguard are 1.7838x10* , 2.5650x10* and
3.0888x10* , respectively, which correspond to

18.4666% , 27.6579% and 34.6995% , respectively, that
for the video sequences Container are 1.8757x107° ,
2.5444x10° and 1.8031x10° , respectively, which
correspond to 0.7710% , 1.5106% and 26.9046% |,
respectively, and that for the video sequences Foreman are
2.1073x10™* , 2.9528x10* and 3.3051x107*
respectively, which correspond to 21.6021%, 34.2148%
and 40.4725% , respectively. From the above computer
numerical simulations, it can be concluded that the mean
square error performances of our proposed method are
always better than the full integer pixel search algorithm,
the full half pixel search algorithm and the full quarter
pixel search algorithm for all of the above three video
sequences. In particular, for slow motion video sequences,
such as the video sequence Container, our proposed



method significantly outperforms the full integer pixel
search algorithm, the full half pixel search algorithm and
the full quarter pixel search algorithm. This is because the
globally optimal motion vectors for these slow motion
video sequences are very close to the origin and far from
the half pixel locations and the quarter pixel locations. In
this case, the full half pixel search algorithm and the full
quarter pixel search algorithm would not yield very
significant improvements over the full integer pixel search
algorithm. On the other hand, our proposed method could
solve the globally optimal motion vectors with very high
pixel precisions and hence vyields very significant

improvements.
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Figure 1. The mean square error performances of our proposed method,
the full integer pixel search algorithm, the full half pixel search algorithm
and the full quarter pixel search algorithm with the size of the marco
blocks gxg and the size of the search windows 32 applied to the video
sequences Coastguard, Container and Foreman.
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Figure 2. The mean square error performances of our proposed method,
the full integer pixel search algorithm, the full half pixel search algorithm
and the full quarter pixel search algorithm with the size of the marco
blocks 16x16 and the size of the search windows 4¢ applied to the video
sequences Coastguard, Container and Foreman.

V. CONCLUSION

A nonlinear block matched motion model is proposed
in this paper. The motion vector which globally minimizes
the mean square error is solved analytically. Hence, a
motion vector with an infinite pixel precision is obtained
at a single step. As integer pixel locations, half pixel
locations and quarter pixel locations are particular
locations represented by our proposed model, the mean
square error based on our proposed method is guaranteed
to be lower than that based on these conventional methods.
Also, as our proposed method does not require searching
from coarse pixel locations to fine pixel locations, our
proposed method is more efficient than conventional
methods particularly when the required pixel precision is
higher than or equal to the quarter pixel precisions.



ACKNOWLEDGEMENT

The work obtained in this paper was supported by a
research grant from the Center for Multimedia Signal
Processing (under project BB9D), The Hong Kong
Polytechnic University.

REFERENCES

[1] Se Young Chun and Jeffrey A. Fessler, “A simple regularizer for
B-spline nonrigid image registration that encourages local
invertibility,” IEEE Journal of Selected Topics in Signal
Processing, vol. 3, no. 1, pp. 159-169, 2009.

[2] 1-Chen Lin, Jeng-Sheng Yeh and Ming Ouhyoung, “Extracting 3D
facial animation parameters from multiview video clips,” IEEE
Computer Graphics and Applications, vol. 22, no. 6, pp. 72-80,
2002.

[3] Avishek Saha, Jayanta Mukherjee and Shamik Sural, “New pixel-
decimation patterns for block matching in motion estimation,”
Signal Processing: Image Communication, vol. 23, no. 10, pp.
725-738, 2008.

[4] Xiaoming Li and Cesar Gonzales, “A locally quadratic model of
the motion estimation error criterion function and its application to
subpixel interpolations,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 6, no. 1, pp. 118-122, 1996.

[5] Cheng Du, Yun He and Junli Zheng, “PPHPS: A parabolic
prediction-based, fast half-pixel search algorithm for very low bit-
rate moving-picture coding,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 13, no. 6, pp. 514-518, 2003.

[6] Yun-Gu Lee, Jae Hun Lee and Jong Beom Ra, “Fast half-pixel
motion estimation based on directional search and a linear model,”
Proceedings of SPIE Visual Communications and Image
Processing, vol. 5150, pp. 1513-1520, 2003.

[7]1 [Online]. Available:
http://www.cipr.rpi.edu/resource/sequences/sif.html



	I. Introduction
	II. Proposed Non-linear Block Matched Motion Model
	III. Derivation of Optimal Motion Vector
	IV. Simulation Results
	V. Conclusion
	Acknowledgement
	References


