9 research outputs found

    Partial uterine perforation and ovarian embedment of misplaced intrauterine device: a case report

    Get PDF
    Intrauterine devices (IUDs) are the commonest form of contraceptive method in use globally. IUDs like other methods of contraception may be associated with its own complications. The major risk includes uterine perforation with embedment, migration, and/or expulsion. A 35 year old female who had a history of postpartum IUD insertion 10 years ago was referred to our institute with complains of severe lower abdominal pain and vomiting since 10 days. Transabdominal and transvaginal ultrasound (TAS/TVS) were done. Ultrasound led to the final diagnosis of ovarian embedment of the IUD. Laparotomy with IUD removal was successfully performed. This case report highlights one of the rare complications of IUD migrating to the left ovary in a patient presenting with lower abdominal pain. In a patient with history an IUD insertion in situ, lower abdominal pain and missing threads on examination should wary the gynaecologist to the possibility of total or partial transmigration of the device into the pelvis or abdomen

    Environment-Induced Decoherence and the Transition From Quantum to Classical

    Get PDF
    We study dynamics of quantum open systems, paying special attention to those aspects of their evolution which are relevant to the transition from quantum to classical. We begin with a discussion of the conditional dynamics of simple systems. The resulting models are straightforward but suffice to illustrate basic physical ideas behind quantum measurements and decoherence. To discuss decoherence and environment-induced superselection einselection in a more general setting, we sketch perturbative as well as exact derivations of several master equations valid for various systems. Using these equations we study einselection employing the general strategy of the predictability sieve. Assumptions that are usually made in the discussion of decoherence are critically reexamined along with the ``standard lore'' to which they lead. Restoration of quantum-classical correspondence in systems that are classically chaotic is discussed. The dynamical second law -it is shown- can be traced to the same phenomena that allow for the restoration of the correspondence principle in decohering chaotic systems (where it is otherwise lost on a very short time-scale). Quantum error correction is discussed as an example of an anti-decoherence strategy. Implications of decoherence and einselection for the interpretation of quantum theory are briefly pointed out.Comment: 80 pages, 7 figures included, Lectures given by both authors at the 72nd Les Houches Summer School on "Coherent Matter Waves", July-August 199

    EFT beyond the horizon: stochastic inflation and how primordial quantum fluctuations go classical

    Get PDF
    We identify the effective theory describing inflationary super-Hubble scales and show it to be a special case of effective field theories appropriate to open systems. Open systems allow information to be exchanged between the degrees of freedom of interest and those that are integrated out, such as for particles moving through a fluid. Strictly speaking they cannot in general be described by an effective lagrangian; rather the appropriate `low-energy' limit is instead a Lindblad equation describing the evolution of the density matrix of the slow degrees of freedom. We derive the equation relevant to super-Hubble modes of quantum fields in near-de Sitter spacetimes and derive two implications. We show the evolution of the diagonal density-matrix elements quickly approaches the Fokker-Planck equation of Starobinsky's stochastic inflationary picture. This provides an alternative first-principles derivation of this picture's stochastic noise and drift, as well as its leading corrections. (An application computes the noise for systems with a sub-luminal sound speed.) We argue that the presence of interactions drives the off-diagonal density-matrix elements to zero in the field basis. This shows why the field basis is the `pointer basis' for the decoherence of primordial quantum fluctuations while they are outside the horizon, thus allowing them to re-enter as classical fluctuations, as assumed when analyzing CMB data. The decoherence process is efficient, occurring after several Hubble times even for interactions as weak as gravitational-strength. Crucially, the details of the interactions largely control only the decoherence time and not the nature of the final late-time stochastic state, much as interactions can control the equilibration time for thermal systems but are largely irrelevant to the properties of the resulting equilibrium state

    DNA and RNA Synthesis: Antifolates

    No full text
    corecore