11 research outputs found

    In vivo erosion of orthopedic screws prepared from nacre (mother of pearl)

    Get PDF
    BACKGROUND: Biodegradable biomaterials have been proposed to prepare orthopedic devices. Nacre is a natural aragonitic material made of calcium carbonate and is bioerodible. WORKING HYPOTHESIS: We postulated that nacre is biodegradable without provoking bone erosion and favors bone apposition. MATERIAL AND METHODS: We prepared orthopedic screws from nacre of the giant oyster Pinctada maxima. Threaded screws (3.5mm diameter) were implanted in 6 ewes in the upper tibial metaphysis (3 to 4 screws per animal). Their trajectory was transcortical and intramedullary to the opposite cortex. Animals were kept for 3months (n=2) and 6 months (n=4). They did not develop local inflammation. Before euthanasia, they received a double calcein labeling. Bone samples were analyzed by X-ray nanotomography and histology after embedding in poly(methyl methacrylate). The fractal dimension of the screw profiles (measured by the box-counting method) was used to quantify surface erosion. RESULTS: 3D nanotomography showed a gradual erosion of the threads, which was confirmed by a decreased fractal dimension. Histologically, multinucleated cells (non-osteoclastic appearance) were visible at the surface of the screws. No ruffled border was seen in these cells but they had extensions creeping in the organic matter between the aragonite tablets. Bone apposition was noted in the transcortical path of the screws with limited osteoconduction at the endosteum. Mineralization rate was increased in these zones composed of woven bone in contact with the nacre. DISCUSSION AND CONCLUSION: Screws prepared from nacre have the advantage of an in vivo resorbability by macrophage-derived cells and an osteoconductive apposition in contact with the material without triggering a local inflammatory reaction

    Giant cells and osteoclasts present in bone grafted with nacre differ by nuclear cytometry evaluated by texture analysis

    Get PDF
    Nacre (mother of pearl) is a natural biomaterial used to prepare orthopedic devices. We have implanted screws and plates made with nacre in five sheeps. Bone were harvested after two months and embedded in poly(methyl methacrylate). Blocks were saws and the thick slabs were grinded, polished and surface stained. Sections were photographed at an ×1000 magnification. Giant cells were found in contact with nacre in eroded areas and true osteoclasts were found at distance in the neighboring bone in Howship lacunae. A texture analysis of the nuclei of giant cells and osteoclasts was done using the run-length method of the MaZda freeware. The size of the nuclei was reduced in osteoclast and their mean gray level appeared reduced. Texture analysis revealed that chromatin had a completely different pattern in giant cells when compared to osteoclasts. Giant cells had a fine repartition of the chromatin with large clear areas around prominent nucleoli. On the contrary, osteoclast nuclei had chromatin blocks evenly dispersed in the nuclei. This reflects the different origin of these cells expressing different functions

    Offshore decommissioning horizon scan: Research priorities to support decision-making activities for oil and gas infrastructure

    Get PDF
    Thousands of oil and gas structures have been installed in the world's oceans over the past 70 years to meet the population's reliance on hydrocarbons. Over the last decade, there has been increased concern over how to handle decommissioning of this infrastructure when it reaches the end of its operational life. Complete or partial removal may or may not present the best option when considering potential impacts on the environment, society, technical feasibility, economy, and future asset liability. Re-purposing of offshore structures may also be a valid legal option under international maritime law where robust evidence exists to support this option. Given the complex nature of decommissioning offshore infrastructure, a global horizon scan was undertaken, eliciting input from an interdisciplinary cohort of 35 global experts to develop the top ten priority research needs to further inform decommissioning decisions and advance our understanding of their potential impacts. The highest research priorities included: (1) an assessment of impacts of contaminants and their acceptable environmental limits to reduce potential for ecological harm; (2) defining risk and acceptability thresholds in policy/governance; (3) characterising liability issues of ongoing costs and responsibility; and (4) quantification of impacts to ecosystem services. The remaining top ten priorities included: (5) quantifying ecological connectivity; (6) assessing marine life productivity; (7) determining feasibility of infrastructure re-use; (8) identification of stakeholder views and values; (9) quantification of greenhouse gas emissions; and (10) developing a transdisciplinary decommissioning decision-making process. Addressing these priorities will help inform policy development and governance frameworks to provide industry and stakeholders with a clearer path forward for offshore decommissioning. The principles and framework developed in this paper are equally applicable for informing responsible decommissioning of offshore renewable energy infrastructure, in particular wind turbines, a field that is accelerating rapidly

    Offshore decommissioning horizon scan : Research priorities to support decision-making activities for oil and gas infrastructure

    Get PDF
    Thousands of oil and gas structures have been installed in the world's oceans over the past 70 years to meet the population's reliance on hydrocarbons. Over the last decade, there has been increased concern over how to handle decommissioning of this infrastructure when it reaches the end of its operational life. Complete or partial removal may or may not present the best option when considering potential impacts on the environment, society, technical feasibility, economy, and future asset liability. Re-purposing of offshore structures may also be a valid legal option under international maritime law where robust evidence exists to support this option. Given the complex nature of decommissioning offshore infrastructure, a global horizon scan was undertaken, eliciting input from an interdisciplinary cohort of 35 global experts to develop the top ten priority research needs to further inform decommissioning decisions and advance our understanding of their potential impacts. The highest research priorities included: (1) an assessment of impacts of contaminants and their acceptable environmental limits to reduce potential for ecological harm; (2) defining risk and acceptability thresholds in policy/governance; (3) characterising liability issues of ongoing costs and responsibility; and (4) quantification of impacts to ecosystem services. The remaining top ten priorities included: (5) quantifying ecological connectivity; (6) assessing marine life productivity; (7) determining feasibility of infrastructure re-use; (8) identification of stakeholder views and values; (9) quantification of greenhouse gas emissions; and (10) developing a transdisciplinary decommissioning decision-making process. Addressing these priorities will help inform policy development and governance frameworks to provide industry and stakeholders with a clearer path forward for offshore decommissioning. The principles and framework developed in this paper are equally applicable for informing responsible decommissioning of offshore renewable energy infrastructure, in particular wind turbines, a field that is accelerating rapidly
    corecore