460 research outputs found

    Hybrid fuzzy and sliding-mode control for motorised tether spin-up when coupled with axial vibration

    Get PDF
    A hybrid fuzzy sliding mode controller is applied to the control of motorised tether spin-up coupled with an axial oscillation phenomenon. A six degree of freedom dynamic model of a motorised momentum exchange tether is used as a basis for interplanetary payload exchange. The tether comprises a symmetrical double payload configuration, with an outrigger counter inertia and massive central facility. It is shown that including axial elasticity permits an enhanced level of performance prediction accuracy and a useful departure from the usual rigid body representations, particularly for accurate payload positioning at strategic points. A special simulation program has been devised in MATLAB and MATHEMATICA for a given initial condition data case

    Research attitudes, practice and literacy among Kenyan palliative care healthcare professionals: an observational, crosssectional online survey

    Get PDF
    Background: While research is needed to advocate for implementation of global agendas to strengthen palliative care, healthcare professionals’ research literacy must improve to bridge the gap between evidence and practice. A resurgent focus on North-South power disparities, means attention should also focus on understanding low- and middle-income countries’ local agency to implement palliative care research agendas. Methods: An observational, cross-sectional online survey among Kenyan palliative healthcare professionals currently working at any of the palliative and hospice care organizations operational during January – December 2019, using descriptive statistics. Results: Among the 93 survey respondents, participants were mainly nurses (50.54%; n=47). Regarding research attitudes: all agreed/strongly agreed research was important for their professional work. Over nine-tenths (91.21%; n=83) reported having the skills to conduct research, and 91.30% (n=84) wanted to conduct research in their clinical work. 90% (90.21%; n=83) reported supervisory support to conduct research. A comparable proportion (90.22%; n=83) would undertake research if they could find funding. Regarding research practice: over two-thirds (70.65%; n=65) reported ever having had a mentor who encouraged them to do research, while approximately half (50.59%; n=43) reported reading evidence-based journal articles about once per month and attending monthly in-house meetings on palliative care (56.79%; n=46). Regarding research literacy: while over two-fifths of respondents described their current research literacy level as ‘none’ or ‘beginner’ (44.56%; n=41), a comparable proportion described it as ‘intermediate’ (45.65%; n=42), with 9 (9.78%) stating it was ‘advanced’. Conclusion: The majority of palliative healthcare professionals report having interest, skills and support at work to conduct palliative care research, with a low-to-medium level of research literacy. The current study explored palliative care staff attitudes to, experience in, and literacy with the research process, which is necessary to creating a dialogue on implementing research findings. This study also adds to the global empowerment agenda, addressing inequities in research opportunities and local capacity to own and undertake palliative care research

    Ligament Tissue Engineering and Its Potential Role in Anterior Cruciate Ligament Reconstruction

    Get PDF
    Tissue engineering is an emerging discipline that combines the principle of science and engineering. It offers an unlimited source of natural tissue substitutes and by using appropriate cells, biomimetic scaffolds, and advanced bioreactors, it is possible that tissue engineering could be implemented in the repair and regeneration of tissue such as bone, cartilage, tendon, and ligament. Whilst repair and regeneration of ligament tissue has been demonstrated in animal studies, further research is needed to improve the biomechanical properties of the engineered ligament if it is to play an important part in the future of human ligament reconstruction surgery. We evaluate the current literature on ligament tissue engineering and its role in anterior cruciate ligament reconstruction

    Kenyan palliative care providers’ and leaders’ perceptions of palliative care research needs and support to facilitate rigorous research

    Get PDF
    Background: Palliative care (PC) can reduce symptom distress and improve quality of life for patients and their families experiencing life-threatening illness. While the need for PC in Kenya is high, PC service delivery and research is limited. Qualitative research is needed to explore potential areas for PC research and support needed to enable that research. This insight is critical for informing a national PC research agenda and mobilizing limited resources for conducting rigorous PC research in Kenya. Objectives: To explore perceptions of priority areas for PC research and support needed to facilitate rigorous research from the perspective of Kenyan PC providers and leaders. Methods: Focus groups (FGs) were conducted in November and December of 2018 using a semi-structured interview guide. FGs were audio-recorded, transcribed, and analyzed using a thematic content analysis approach. Results: Three FGs were conducted (n = 22 participants). Ten themes related to PC research emerged, including research on: 1) beliefs about death, disease, and treatment to inform PC; 2) awareness about PC, 3) integration of PC within the health system; 4) understanding caregiver experiences and needs; 5) community health volunteers (CHVs) and volunteer programs; 6) evaluation of costs and benefits of PC; 7) treatment approaches, including complementary and alternative medicine (CAM) and advanced diagnostics at end of life; 8) other suggestions for research, 9) populations in need of PC research; and 10) resources for enabling research. Conclusions: Kenyan PC providers and leaders identified key areas requiring increased scientific inquiry and critical resources needed to enable this research. These findings can help to focus future PC research in Kenya and encourage funding agencies to prioritize the issues identified

    Fate and occurrence of alkylphenolic compounds in sewage sludges determined by liquid chromatography tandem mass spectrometry

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2009 Taylor & Francis.An analytical method has been developed and applied to determine the concentrations of the nonionic alkylphenol polyethoxylate surfactants and their metabolites, alkylphenoxy carboxylates and alkyphenols, in sewage sludges. The compounds were extracted with methanol/acetone (1:1 v/v) from sludge, and concentrated extracts were cleaned by silica solid‐phase extraction prior to determination by liquid chromatography tandem mass spectrometry. The recoveries, determined by spiking sewage sludge at two concentrations, ranged from 51% to 89% with method detection limits from 6 µg kg−1 to 60 µg kg−1. The methodology was subsequently applied to sludge samples obtained from a carbonaceous activated sludge plant, a nitrifying/denitrifying activated sludge plant and a nitrifying/denitrifying activated sludge plant with phosphorus removal. Concentrations of nonylphenolic compounds were two to three times higher than their octyl analogues. Long‐chain nonylphenol polyethoxylates (NP3–12EO) ranged from 16 µg kg−1 to 11754 µg kg−1. The estrogenic metabolite nonylphenol was present at concentrations ranging from 33 µg kg−1 to 6696 µg kg−1.Public Utilities Board of Singapore, Thames Water and Yorkshire Water

    Influence of innate sludge factors and ambient environmental parameters in biosolids storage on indicator bacteria survival: A review

    Get PDF
    The potential health risks associated with sludge cake application to agricultural land are managed by controlling the levels of Escherichia coli (E. coli) bacteria which indicate the risk of pathogen transfer. Analyses undertaken following post-digestion sludge dewatering have shown unpredictable levels of E. coli increase in stored sludge cake. Presently there is limited understanding on environmental parameters controlling the indicator bacteria density in storage and the contributory effects dewatering may have. This review aims to establish the state of current knowledge on innate and environmental factors influencing E. coli dynamics and survival in biosolids. A key factor identified is the effect of mechanical dewatering processes, which transform the sludge matrix environmental conditions through the increased availability of growth factors (e.g. nutrient and oxygen). Examples of storage practices from the agricultural and food industries are also discussed as successful methods to inhibit bacterial growth and survival, which could be extrapolated to the biosolids sector to regulate E. coli concentrations

    Numerical Solution of a Complete Formulation of Flow in a Perfusion Bone-Tissue Bioreactor Using Lattice Boltzmann Equation Method

    Full text link
    We report the key findings from numerical solutions of a model of transport within an established perfusion bioreactor design. The model includes a complete formulation of transport with fully coupled convection-diffusion and scaffold cell attachment. It also includes the experimentally determined internal (Poly-L-Lactic Acid (PLLA)) scaffold boundary, together with the external vessel and flow-port boundaries. Our findings, obtained using parallel lattice Boltzmann equation method, relate to (i) whole-device, steady-state flow and species distribution and (ii) the properties of the scaffold. In particular the results identify which elements of the problem may be addressed by coarse grained methods such as the Darcy approximation and those which require a more complete description. The work demonstrates that appropriate numerical modelling will make a key contribution to the design and development of large scale bioreactors.Comment: 9 pages, 3 figure

    Selective activation of mechanosensitive ion channels using magnetic particles

    Get PDF
    This study reports the preliminary development of a novel magnetic particle-based technique that permits the application of highly localized mechanical forces directly to specific regions of an ion-channel structure. We demonstrate that this approach can be used to directly and selectively activate a mechanosensitive ion channel of interest, namely TREK-1. It is shown that manipulation of particles targeted against the extended extracellular loop region of TREK-1 leads to changes in whole-cell currents consistent with changes in TREK-1 activity. Responses were absent when particles were coated with RGD (Arg–Gly–Asp) peptide or when magnetic fields were applied in the absence of magnetic particles. It is concluded that changes in whole-cell current are the result of direct force application to the extracellular loop region of TREK-1 and thus these results implicate this region of the channel structure in mechano-gating. It is hypothesized that the extended loop region of TREK-1 may act as a tension spring that acts to regulate sensitivity to mechanical forces, in a nature similar to that described for MscL. The development of a technique that permits the direct manipulation of mechanosensitive ion channels in real time without the need for pharmacological drugs has huge potential benefits not only for basic biological research of ion-channel gating mechanisms, but also potentially as a tool for the treatment of human diseases caused by ion-channel dysfunction

    Disruption of cells in biosolids affects E. coli dynamics in storage

    Get PDF
    Achieving microbial compliance during biosolids storage can be complicated by the unpredictable increase of Escherichia coli. Thermal treatment during anaerobic digestion (AD) and the effects of dewatering may be a significant factor contributing to indicator survival. Shear forces present during dewatering may promote cell damage, releasing nutrient for E. coli growth. The effect of cell damage on E. coli survival was assessed in laboratory-scale thermal and physical disruption experiments. E. coli growth curves for disrupted treatments were compared with control conditions and quantified using flow cytometry and membrane filtration techniques. A significant difference (p < 0.05) in the level of damaged cells between control and disrupted conditions was observed. For thermal and physical disruption treatments, the peak of E. coli concentration increased significantly by 1.8 Log and 2.4 Log (CFU (colony forming units) g−1 DS), respectively, compared with control treatments. Research findings contribute to the understanding of bacterial growth and death dynamics in biosolid
    corecore