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Disruption of cells in biosolids affects E. coli dynamics in storage
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Abstract

Achieving microbial compliance during biosolids storage can be complicated by the unpredictable increase of
Escherichia coli. Thermal treatment during anaerobic digestion (AD) and the effects of dewatering may be a sig-
nificant factor contributing to indicator survival. Shear forces present during dewatering may promote cell
damage, releasing nutrient for E. coli growth. The effect of cell damage on E. coli survival was assessed in labora-
tory-scale thermal and physical disruption experiments. E. coli growth curves for disrupted treatments were
compared with control conditions and quantified using flow cytometry and membrane filtration techniques. A sig-
nificant difference (p <0.05) in the level of damaged cells between control and disrupted conditions was
observed. For thermal and physical disruption treatments, the peak of E. coli concentration increased significantly
by 1.8 Log and 2.4 Log (CFU (colony forming units) g~' DS), respectively, compared with control treatments.
Research findings contribute to the understanding of bacterial growth and death dynamics in biosolids.
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INTRODUCTION

Monitoring levels of pathogenic indicators in biosolids validates the effectiveness of treatment pro-
cesses and ensures the safe recycling of biosolids to agricultural land (European Commission
2015). Concerns of pathogen removal in biosolids treatment during storage have been raised where
post-dewatering levels of microbial indicators can exceed compliance levels (Monteleone et al.
2004; Higgins et al. 2007a; Chen ef al. 2011).

Centrifuge dewatering is a common method used to remove the liquid fraction of sludge. Prior to
dewatering, E. coli indicator concentrations in the digested liquid sludge tend to be (in the case of
study sites examined here) approximately 4 Log (CFU (colony forming units) g~ DS) (operational
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data, Severn Trent plc). However, after dewatering operations, particularly in the first 48 h of storage,
indicator concentrations have been observed to increase rapidly, reaching levels of approximately 7
Log (CFU g ! DS) in some cases (operational data, Severn Trent plc). This observation is not isolated
and has been observed on other treatment sites (Monteleone et al. 2004; Higgins et al. 2007a; Qi et al.
2007; Chen et al. 2011). This rapid increase in E. coli levels may indicate the presence of pathogenic
bacteria within the biosolids product and is a concern for utility operators.

The reasons for indicator increase in stored biosolids post-dewatering have not yet been clearly iden-
tified (Dentel et al. 2008). One possible explanation is that following suppression during thermal
anaerobic digestion (AD) treatment, the release of readily bioavailable nutrients during mechanical
dewatering processes may provide substrates for bacterial growth during subsequent storage periods
(Higgins et al. 2006, 2007a; Chen et al. 2011; Sun et al. 2015). The pre-conditioning of the digested
sludge with polyelectrolyte to form flocs aggregates the sludge organic matter, which could favour
the growth of bacterial cells held within the floc matrix. In addition, the floc structure can provide pro-
tection from environmental stressors, prolonging cell survival (Mahendran et al. 2012; Lin ef al. 2014).

Although the mechanical dewatering process is conditioned to support aggregation and the for-
mation of the cake product (Higgins et al. 2007b), researchers suggest that the effects of
mechanical shear during dewatering treatments can cause floc disruption and even bacterial disper-
sal, elevating indicator concentrations. Research by Chen et al. (2011) suggested that reasons for the
bacterial increase were explained by the release of soluble proteins and other organics during shear-
ing, which serves as substrate sources for microbial organisms. Higgins et al. (2007b) suggested that
the cause of indicator increase may be cell reactivation as the shear force exerted on the sludge during
centrifuge dewatering releases bioavailable nutrients which supports the culturability of bacterial cells
previously held in a viable but non-culturable (VBNC) state. This nutrient release may be from cell
lysis. Sun et al. (2015) investigated dewatering processes on cyanobacteria-containing sludge and
attributed cell lysis to flocculation turbulence and pressure from mechanical operations on flocs.

The effects of methanogen cell lysis resulting from centrifuge dewatering were studied by Chen et al.
(2005) who identified that a higher level of shearing led to greater cell lysis and inhibition of metha-
nogenesis (Chen ef al. 2005). The sludge AD environment contains a complex community of bacteria,
many of which are obligate anaerobes (Town ef al. 2004; Shah ef al. 2004). During dewatering, oxygen
exposure may be increased in the sludge matrix (Chen et al. 2011), which could additionally have
lethal effects on cells preferentially adapted for the anaerobic environment. The growth of E. coli bac-
teria may, therefore, be enhanced as obligate anaerobes decay and provide a food source for the viable
E. coli bacteria to grow.

In response to other stressors such as heat, Noor (2015) identified lysis of VBNC E. coli cells as a
response to heat stress. Findings suggested a possible survival output from the cell lysis, contributing
to the removal of damaged cells able to serve as nutrients for the remaining population. Research by
Higgins et al. (2007b) suggests that the effects of AD cause bacterial cells, including E. coli cells, to
enter a VBNC state. The VBNC state of E. coli cells may be reversed during mechanical dewatering
as the environment favours the growth of the indicator bacteria. Based on research by Noor (2015), it
may be feasible to suggest that a proportion of the bacterial cells in a VBNC state lyse and provide
cellular nutrients for the remaining reactivated bacteria. Confirmation of cellular nutrients supporting
viable cell survival is highlighted in Murate ef al. (2012) who showed that cytoplasmic materials are
released into the culture medium as a result of cell lysis and may act as a nutrient supplement for
remaining cell population survival. Murate ef al. (2012) suggested that further research is required
to clarify whether cell lysis increases available nutrients able to support remaining cell survival.
The disruption of cells may enhance E. coli replication and the recovery of dormant cells as cellular
nutrients are released and added to the sludge matrix. Therefore, the hypothesis tested in this study is
that cell disruption provides a substrate source able to support the growth of E. coli bacteria in sewage
sludge cake stored under favourable conditions.
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METHODOLOGY
sludge sampling and storage

Samples of sludge cake, which had been both mesophilic digested and centrifuge dewatered, were
collected from a wastewater treatment works serving a population equivalent of 440,000. The
characteristics of the cake at the treatment works showed a sludge of 20% DS with a pH of 8 and
a typical E. coli concentration of 5.5 CFU Log;o g * DS at time 0 (day of sample collection). Repre-
sentative sub-samples were taken to form a bulk sample of approximately 26 kg and were collected at
a depth of 0.5 m using a spade or ‘corer’ device from central locations on the sludge stockpile after the
0.5 m surface ‘crust’ had been discarded. From this bulk (26 kg) sample, sub-samples were taken for
the subsequent experimental treatments. The sludge cake samples collected from the treatment site
were less than 24 h old from the point of centrifuge output and enabled laboratory-tested storage
environments to begin from ‘day 1’ assumption. Samples were placed in screw lid sampling pots
(Nalgene, Rochester, USA) and transported to the laboratory in insulated cool boxes and stored in
the dark at temperatures between 2 and 8 °C to suppress biological activity. Samples were processed
within 24 h of sampling.

Samples collected from the treatment site were then used in the two sets of experiments described
below.

Experimental treatments

To reduce bacterial concentrations, two methods of disruption were applied to samples.

Thermal disruption

Samples of 6 x 50 g were subjected to treatment at 62 °C (£2 °C) for 20, 80 and 120 min (Gallen-
kamp, A. Gallenkamp, London, UK). An additional comparative treatment included 50 g x 4
samples subject to autoclaving at 121 °C for 15 min at 1.03 bar (40.03 bar) (Priorclave, London,
UK). For the experimental set-up, 100 g (2 x 50 g) of each thermally treated sludge cake sample
was placed into a glass beaker (FisherBrand, Loughborough, UK). One (100 g) autoclaved sample
was mixed with an additional 0.5 g of the undisrupted sludge cake to reintroduce a sludge-derived bac-
terial community including E. coli. Alongside the thermal treatments, an undisrupted sample of
sewage sludge cake (100 g) was tested as a control condition. All samples were well mixed, covered
with Parafilm M (FisherScientific, Loughborough, UK) and stored at 22 °C (+2 °C) for 10 days.
Flow cytometry analysis distinguished intact and damaged cell concentrations and membrane fil-
tration determined E. coli bacterial levels. All sample conditions were repeated in triplicate.

Physical disruption

Microcosms of 3 g of fresh sewage sludge cake sample were mixed with 15 mL of deionised water and
sonicated for 7 min at 33 W (MicroTip, Virsonic 600, VirTis, USA). Additional microcosms were set
up and not subjected to sonication treatment, remaining as control conditions. All samples were cov-
ered with Parafilm M" (FisherScientific, Loughborough, UK) and stored at 22 °C (+2 °C) for 10 days.
Flow cytometry analysis distinguished intact and damaged cell concentrations, and membrane fil-
tration determined E. coli bacterial levels. Dissolved organic carbon (DOC) analysis was conducted
on samples before and after physical disruption treatment. All sample conditions were replicated in
triplicate, and each microcosm was used sacrificially on the day of testing.
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Analytical methods
Microbial enumeration

Membrane filtration (Environment Agency 2003) was used for bacterial enumeration using Mem-
brane Lactose Glucuronide Agar (MLGA) (OXOID, Basingstoke, UK) plates to distinguish E. coli
from coliforms. From each sample condition, 3 g of material was removed and mixed with 15 mL
of maximum recovery diluent (MRD) (OXOID, Basingstoke, UK) in a universal tube. To ensure effec-
tive homogenisation, samples were subjected to vortexing for 1 min (Scientific Industries Vortex-
Genie 2 50 Hz, New York, USA) prior to settling for a further 20 s. The supernatant was then removed
for serial dilution. Samples were serially diluted with MRD to ensure CFUs were <80/plate. Samples
were passed through 0.45 pum filters (Millipore S-PAK® 47 mm, Watford, UK) using a 3-way vacuum
manifold (CombiSart®, Sartorius UK Ltd, Surry, UK). Filters were placed on MLGA plates and incu-
bated at 30°C (+1°C) for 4h (+1)h and 37°C (+0.5°C) for 18 (4+2)h as described by the
Environment Agency (2003). Arising green colonies were counted as presumptive E. coli, yellow colo-
nies were counted as coliforms, and pink colonies were recorded as non-coliforms. All E. coli
enumeration results were normalised against the percentage of dry solids (DS%). Three gram of the
sludge sample was used for DS determination and analysis was performed as per the Environment
Agency (2003) guidance.

Flow cytometry measurement

For flow cytometric analysis, 1 g of the sample was vortexed for 30 s with 9 g of MRD to form a liquid-
sludge mix. Samples were sonicated twice for 2 min (Grant Ultrasonic Bath XUBA1, Grant Instru-
ments Ltd, Cambridgeshire, UK) to enhance the disaggregation of sludge flocs within the sample
and disperse bacteria from the sludge particle attachment. Once sonicated, samples were passed
through a 20 um filter (Cat. No.: 1004-070, Whatman™, GE Healthcare, Buckinghamshire, UK)
using a vacuum pump (No35.1.2AN.18, KNF Neuberger Ltd, Witney, UK) to remove large sludge par-
ticles from the sample, preventing interference with flow cytometry measurement (FCM) (Foladori
et al. 2010).

Serial dilution was completed on the prepared sample suspension using filtered, cell-free (0.1 um;
Millex, Merck Millipore Ltd, Tullagreen, Ireland) bottled mineral water (EVIAN, EVIAN-les-
Baines, France), so that the concentration measured with the flow cytometer was always less than
10° counts mL~!. Filtered mineral water is often used as a diluent for flow cytometric analysis as it
provides osmotic stability (Hammes ef al. 2012; Gillespie et al. 2014).

FCM was completed as described by Gillespie ef al. (2014) and Foladori ef al. (2007, 2010). SYBR
Green I (10,000 x stock, Cat. No.: S-7567, Life Technologies Ltd, Paisley, UK) was diluted with
dimethyl sulfoxide (DMSO, Fisher Scientific, Fair Lawn, NJ, USA) to obtain a working stock solution
of 100x. For the measurement of intact and damaged cell concentrations, a dye mix containing five
parts of 100 x SYBR Green I and one part of propidium iodide (PI; 1.0 mg/mL) (Cat. No.: P3566, Life
Technologies Ltd, Paisley, UK) was prepared. About 2.76 uL of this dye mix was added to 230 uL of
the sample. Following the addition of the dye, samples were placed in an incubator shaker (Grant-Bio
PHMP, Grant Instruments Ltd, Cambridgeshire, UK) set at 620 rpm at 37 °C for 13 min with the lid
closed to ensure homogeneous temperature conditions and to avoid light exposure (Gillespie et al.
2014). Following incubation, sample volumes of 50 uL. were analysed using a BD Accurri C6 flow cyt-
ometer equipped with a 488 nm solid state laser (Becton Dickinson UK Ltd, Oxford, UK).

Green fluorescence was collected in the ‘FL-1’ channel at 533 nm, and red fluorescence was col-
lected in the ‘FL-3’ channel at 670 nm with the trigger set on FL-1. Only signals above an FL-1
threshold of 2,000 were recorded. No colour compensation was used. A fixed gate, previously defined
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by Gatza et al. (2013), was used as a template with the corresponding instrument settings to determine
the intact cell concentration (ICC). Data were processed using the Accurri C6 software (Becton Dick-
inson UK Ltd, Oxford, UK). Damaged cell concentrations were defined by a second fixed gate using
the guidance from Foladori et al. (2007, 2010). Figure 1 shows the gate positions used.
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Figure 1 | Representative FCM cytogram showing distribution of microbial clusters in control sample. Signals from intact cells
are within the P1 (red) gated region (Gatza et al. 2013) and signals from damaged bacteria (propidium iodide stained cells) are
shown in P2 (green) gated region (Folardori et al. 2007, 2010). Other signals are caused by organic and inorganic background
(Harry et al. 2016).

All measurements were performed in triplicate and FCM analysis at time 0 was always taken pre-
and post-disruption treatment.

All bacterial numbers, both from membrane filtration and FCM, were referred as the percentage dry
solids (DS%) content for normalisation based on Environment Agency (2003) methods.

Dissolved organic carbon analysis

Dissolved organic carbon (DOC) determination was conducted using a Series 2000 autosampler (Bur-
kard, Uxbridge, UK) following methods supplied by Burkard Scientific. For sample preparation, 1 g of
the sludge cake was vortexed for 30 s with 9 g of deionised water to form a liquid-sludge mix. Samples
were sonicated twice for 2 min (Grant Ultrasonic Bath XUBA1, Grant Instruments Ltd, Cambridge-
shire, UK) to enhance the disaggregation of sludge flocs within the sample. Once sonicated, samples
were passed through a 20 um filter (Cat. No.: 1004-070, Whatman™, GE Healthcare, Buckingham-
shire, UK) using a vacuum pump (N035.1.2AN.18, KNF Neuberger Ltd, Witney, UK) to remove
sludge particles. The persulfate ultraviolet oxidation method was used to measure DOC concen-
trations in the prepared sample (APHA 1995).

Statistical analysis

Using STATISTICA (Version 12, Tulsa, USA), a normality assessment was conducted on the dataset
using the histogram and normal probability plot programme function. Variables departing from nor-
mality were transformed using a Box-Cox transformation (Marques de Sa 2007). A repeated-measures
ANOVA was performed to identify statistically significant difference (p < 0.05) between and within
the conditions tested. In individual tests, the dependent variable was set as either ‘damaged cell con-
centration’, ‘E. coli’ or ‘DOC’. Treatment conditions such as ‘undisrupted’ and ‘disrupted’” were set as
the categorical factors. The validity of the ANOVA assumptions, including normality of residuals
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(Gujarati 2011), were tested through residual analysis. A post-hoc analysis (Fisher’s LSD) was carried
out to assess the distinct differences between experimental conditions (Marques de Sa 2007).

RESULTS
Thermal disruption

A significant difference was found between levels of damaged bacteria in undisrupted (control) and
disrupted treatments (Figure 2). For thermal treatments at 62 °C for 80 min, results show a significant
increase of 24.7% in the proportion of damaged cells. A gradual increase in damaged cells is observed
up to 80 min of exposure. Autoclave treatments showed a significant increase of 36% in damaged cell
concentration when compared with undisrupted samples. In comparison with samples exposed to
62 °C for 120 min, levels of damaged cells were 11.3% higher in autoclaved treatments.

Thermal disruption treatments significantly reduced levels of E. coli bacteria. The greatest reduction
was observed after 80 min of exposure where E. coli concentrations fell to 0.8 Log and were signifi-
cantly different from other treatments at day 1 (Figure 3(b)). In contrast, after 120 min of exposure,
E. coli concentrations only showed a reduction to 2.8 Log (Figure 3(c)). For samples exposed to a
greater degree of thermal disruption, a longer recovery time was necessary for E. coli populations
to return back to pre-disrupted levels or above. Undisrupted samples retained a relatively stable con-
centration of E. coli, averaging 5.9 Log throughout the 10-day test period.

Thermal disruption of samples consistently resulted in an increase in peak E. coli concentration when
compared with undisrupted treatments. A disruption time of 20 min peaked at 7.7 Log, 80 min at 7.2 Log,
and 120 min showed a peak E. coli concentration of 7.7 Log. Peak E. coli concentrations for each respect-
ive treatment were significantly different (p < 0.05) from undisrupted samples. By day 10, observations of
the 20- and 80-min disruption treatments showed a plateau in E. coli concentrations at 7.3 and 7 Log,
respectively. This result was significantly higher from the undisrupted sample concentration. For
120 min of exposure, no significant difference was shown with undisrupted samples at day 10.

Undisrupted 62°C for 20 Minutes 62°C for 80 Minutes 62°C for 120 Minutes
121°C for 15 minutes

121°C for 15 minutes +05¢g undlsrupted sludge

Figure 2 | Proportions of intact and damaged cells in samples after thermal disruption treatments. Samples thermally dis-
rupted at 62 °C for 20, 80 and 120 min or autoclaved at 121 °C for 15 min at 1.03 bar (+0.03 bar). A second autoclaved sample
included 0.5 g of undisrupted sludge in addition to reintroduced sludge-derived E. coli. Chart segment numbers indicate the %
of intact or damage cells. Key: m % intact, = % damaged.
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Figure 3 | E. coli concentration during controlled storage at 22 °C for 10 days after thermal disruption treatment at 62 °C for (a)
20 mMin (=——e=), (b) 80 Min (—e=) and (c) 120 min (—e=—). All plots include E. coli concentrations recorded from undisrupted
control condition (—o-). Time 0 represents E. coli concentration prior to disruption treatments. Error bars represent the
standard deviation of three repeats (n = 3).

E. coli concentrations fell significantly to undetectable levels after autoclave disruption (Figure 4(a)).
For samples inoculated with 0.5 g of the undisrupted sample after autoclaving, E. coli concentrations
were raised to 2.1 Log at day 1. A significant difference (p < 0.05) in peak E. coli concentrations was
observed between the two autoclaved treatments. A longer recovery time of 6 days was necessary for auto-
claved E. coli populations to return to pre-disrupted levels. Autoclaved treatments showed a steady
increase in E. coli concentrations over the test period reaching 6 Log on day 10. For samples inoculated
with 0.5 g of the undisrupted sludge, E. coli recovery time was faster and peaked after 3 days at 7.3 Log. A
comparison with undisrupted samples showed only the autoclaved treatment with the additional 0.5 g
undisrupted sample to have a significantly higher peak E. coli concentration (Figure 4(b)).

Physical disruption

Physical disruption significantly increased the proportion of damaged cells in the sludge sample by
51.6% (Figure 5). A significant increase of 44,484 mg/kg DS in levels of DOC after physical disruption
treatment was observed.
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Figure 4 | E. coli concentration during controlled storage at 22 °C for 10 days after samples thermally disrupted through
autoclaving for 15 min at 121 °C (pressure = 1.03 bar +0.03). Key: (a) —e— autoclaved sample, (b) —e— autoclaved sample
inoculated with 0.5 g of the undisrupted sludge sample to reintroduce sludge-derived E. coli. Both conditions plotted against
undisrupted control conditions (= ¢-). Time 0 represents the E. coli concentration prior to disruption treatments. Error bars
represent the standard deviation of three repeats (n = 3).
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Undisrupted Physically Disrupted

305

821

Figure 5 | Proportions of intact and damaged cells in samples after physical disruption treatment and in the undisrupted
control condition. Chart segment numbers indicate the % of intact or damaged cells. Key: m % intact, = % damaged.

A significant increase of 3 Log was observed in the levels of E. coli bacteria between time 0 and day
3 of storage for physically disrupted samples (Figure 6). Undisrupted samples remained at a consistent
level of 6.6 Log over the 10-day test period. E. coli concentrations in physical disruption treatments
increased steadily, peaking at 9 Log on day 4 of storage. The peak E. coli concentration in disrupted
samples was significantly different from undisrupted treatments (p < 0.05). Between day 4 and day 10,
E. coli concentrations in disrupted samples reduced steadily by 1 Log, despite remaining above con-
trol treatment conditions.

N W O N O ©W O

E. coli (CFU Log,, g DS)
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0 2 4 6 8 10
Incubation Period (Days)

Figure 6 | Effect of physical disruption treatment on E. coli bacteria concentration plotted against control (undisrupted) sample.
Key: = o= undisrupted control, —e— physically disrupted sample. Error bars represent the standard deviation of three repli-
cates (n=3).

DISCUSSION
Microbial and nutrient response to effects of disruption treatments and growth in subsequent storage

Indicator bacteria increase in stored biosolids has been attributed to the effects of mechanical dewatering.
Researchers highlight possible effects of shear impacting upon the integrity of the sludge matrix and caus-
ing the release of nutrients, which may support bacterial growth (Higgins et al. 2007b; Chen et al. 2011;
Sun et al. 2015). Flocculation turbulence and pressure from mechanical operations on flocs can cause cell
damage (Sun et al. 2015). Further to this, researchers have identified cell lysis as a response to mechanical
shear and also heat stress factors (Chen et al. 2005; Noor 2015). This research work assessed the impact of
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thermal and physical disruption on E. coli behaviour in stored biosolids after initial on-site centrifuge
dewatering treatments. Laboratory treatments were conducted as a proof of principle to study the
effect of cell disruption on E. coli dynamics and therefore were not intended to replicate on-site biosolids
production processes. In order to clarify whether cell disruption increased available nutrients able to sup-
port remaining cell survival (Murate ef al. 2012), measurements of DOC were undertaken and E. coli
enumeration completed in the subsequent days of storage to determine peak concentrations.

Results showed a significant effect of disruption treatment, both thermal and physical, on levels of
damaged cells within test samples. Longer exposure to temperature treatments (62 °C) and the com-
bination of high temperature and pressure (autoclaving) caused intact cell numbers to fall by 36%.
These ICCs were compared with E. coli enumeration data and reflected similar trends with a
reduction in levels of culturable E. coli bacteria after thermal disruption treatments. A methodological
limitation identified from the thermal disruption treatments was the lower level of E. coli bacteria
inactivation identified after 120 min exposure to 62 °C where E. coli concentration was only reduced
to 2.8 Log. This result was not comparable to the elevated level of cell damage identified in FCM data
for 120 min and may have been due to sludge flocs protecting E. coli bacteria and reducing effects
from thermal stress (Chang et al. 2001; Qi ef al. 2007). The presence of highly aggregated structures
or flocs in the tested sludge cake where bacteria may be embedded (Orrufio ef al. 2013) could protect
cells from the 62 °C disruption treatment and enable them to remain in a viable state and grow when
returned to a lower, more favourable storage temperature (such as the 22 °C incubation temperature).
Therefore, pre-treatment to disrupt flocs may have been a beneficial stage of sample preparation.

Physical disruption was likely to be more similar to actions experienced in the sludge matrix during
mechanical dewatering. Although effects of physical disruption treatments on E. coli were less prominent,
FCM data showed damaged cells to increase by 51.6% in tested samples, indicating that other, perhaps
more sensitive, sludge-derived bacteria were affected by the treatment. For E. coli concentrations, the
reductions displayed after disruption treatments emphasised the inhibition of culturable cells. Though
E. coli colonies were reduced on the culture media (in some cases to undetectable levels), this cannot
be attributed to cell death and most likely reflect a state of VBNC in cells exposed to disruption treatments.
Oliver (2010) suggested that incubation outside of the normal temperature range of growth can induce the
VBNC state and is a common response to stress in bacterial cells. This becomes apparent from the E. coli
growth curves generated in the following days of storage at 22 °C where, in all disrupted treatments, con-
centrations recovered to pre-disrupted levels. Oliver (2010) studied the effects of temperature on
culturability in three strains of Vibrio vulnificus incubated at 11 °C to induce a VBNC state (V. vulnificus
enters the VBNC state when exposed to temperature <13 °C). After a temperature upshift to 22 °C for
24 h, all three strains tested recovered to levels above 10* CFU mL~! (Oliver 2010). The 22 °C incubation
temperature may have provided an adequate environment for cell reactivation and growth where
viable cells could utilise the nutrients released from cells damaged during disruption treatment. Likely
evidence of the VBNC mechanism may be identified in autoclave treatments where CFUs reached
undetectable levels after treatment but recovered to 2.6 Log within 24 h of incubated storage. A longer
storage period may have allowed the peak E. coli concentration to be reached in autoclaved treatments
as cell recovery time was slower. However, the significant change in concentration between time 0 and
24 h suggests that cells were able to recover and grow rapidly after such an extreme thermal treatment.
Higgins et al. (2007a) highlighted that after dewatering, conditions develop that encourage rapid
growth of coliforms with concentrations peaking in 1-3 days of storage. That study attributed reactivation
of VBNC cells to shear in mechanical dewatering releasing growth factors which reactivate bacteria to a
culturable state (Higgins ef al. 2007b). In the present experiments, growth factors such as cellular nutrients
have been quantified through the surrogate measure of DOC concentrations. Data showed a significant
rise in levels of DOC present in the sludge matrix after disruption treatments (DOC increased by
4,448 mg/kg DS after physical disruption of samples), which coincided with elevated concentrations of
E. coli bacteria. This finding is similar to a study by Franz et al. (2008) who found microbial activity
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per unit of biomass to be positively correlated with concentrations of DOC in manure-amended soils.
Natural sources of carbon in sewage sludge will be present in organic compounds (Sigma Aldrich
2016); however, this may not be in a bioavailable form. Carbon is an important component of cellular
material (Todar 2012) and, therefore, a critical element required for microbial growth. Tang et al.
(2012) observed growth stimulation of E. coli bacteria in assays with DOC-rich samples. In biologically
treated sewage effluent, Shon & Vigneswarn (2007) highlighted the constituents of DOC, which included
amino acid, polysaccharide and protein. It is likely that the constituents of DOC identified by Shon &
Vigneswarn (2007) are also present (perhaps to a more limited extent) in sewage sludge and, therefore,
the increase in DOC observed after laboratory disruption treatments is a relevant measure of increasing
nutrient levels in the biosolids tested. As sewage sludge cake is known to be nutrient limiting after stabilis-
ing up-stream AD processes (Smith et al. 2005), it is likely that any increase in nutrient availability will
create a favourable effect on the growth of microorganisms.

In these experiments, physical and thermal stress was imposed on the biosolids material with the
aim of increasing cell disruption (lysis), which was quantified using FCM of damaged cells. In
the experiments conducted, cell lysis was achieved from the treatments imposed and is verified by
the increase in DOC levels in disrupted samples. Shon & Vigneswarn (2007) show DOC to include
cell fragment, extracellular enzyme, DNA, RNA and other components of the cellular material. The
cellular material from the disrupted cells is able to be used by the remaining cell population to support
growth. In the present study, the growth of E. coli bacteria during incubated storage of the disrupted
samples consistently showed a significantly higher peak E. coli concentration when compared with
undisrupted treatments, indicating an increase in available nutrients for growth.

These findings suggest that cell disruption does provide a substrate source able to support the reac-
tivation and growth of E. coli bacteria in the sewage sludge cake stored at 22 °C for 10 days and
therefore the hypothesis tested can be accepted.

CONCLUSIONS

1. Thermal and physical disruption treatments were successful methods to increase levels of cell
damage within a sample.

2. Increase in damaged cells coincided with higher DOC concentrations indicating cell lysis and an
increase in available nutrients for the remaining viable cells.

3. Peak E. coli concentration was significantly higher for disrupted samples in comparison to undis-
rupted treatments, suggesting the utilisation of cellular nutrients for growth when samples are
placed in favourable growth conditions (22 °C).

4. The likely release of cellular nutrients from cells damaged during mechanical dewatering may be a
contributory factor elevating E. coli concentrations in stored biosolids.

ACKNOWLEDGEMENTS

The authors thank the Natural Environment Research Council (NERC) and Severn Trent Plc. for their
financial support.

DATA ACCESS STATEMENT

All data are provided in full in the Results section of this paper.

Downloaded from https://iwaponline.com/h2open/article-pdf/2/1/101/571534/h20j0020101.pdf
bv CRANFIELD UNIVERSITY user



H,Open Journal Vol 2 No 1
111 doi: 10.2166/h20j.2019.028

REFERENCES

APHA 1995 Standard Methods for the Examination of Water and Wastewater, 19th Edn. APHA, Washington, DC, USA.
Automated Hydrazine Reduction Method.

Chang, L. L., Raudenbush, D. L. & Dentel, S. K. 2001 Aerobic and anaerobic biodegradability of a flocculant polymer. Water
Science and Technology 44 (2-3), 461-468.

Chen, Y. C., Higgins, M. J., Beightol, S. M., Murthy, S. N. & Toffey, W. E. 2011 Anaerobically digested biosolids odor generation
and pathogen indicator regrowth after dewatering. Water Research 45, 2616-2626.

Chen, Y., Higgins, M. J., Maas, N. A., Murthy, S. N., Toffey, W. E. & Foster, D. J. 2005 Roles of methanogens on volatile organic
sulfur compound production in anaerobically digested wastewater biosolids. Water Science and Technology 52 (1-2),
67-72.

Dentel, S. K., Qi, Y. & Herson, D. S. 2008 Improving the assessment of risk from pathogens in biosolids: fecal coliform
regrowth, survival, enumeration and assessment. Water Science Technology 57, 189-193.

Environment Agency 2003 The Microbiology of Sewage Sludge - Part 3 - Methods for the Isolation and Enumeration of
Escherichia coli, Including Verocytoxigenic Escherichia coli. Bristol. Available from: https://assets.publishing.service.gov.
uk/government/uploads/system/uploads/attachment_data/file/755595/mss2003__part 3_604573.pdf (accessed 20
March 2019).

European Commission 2015 Evaluation of Sludge Treatments for Pathogen Reduction. Available from: http://ec.europa.eu/
environment/waste/studies/sludge_eval.htm (accessed 04 January 2018).

Foladori, P., Bruni, L., Tamburini, S. & Ziglio, G. 2010 Direct quantification of bacterial biomass in influent, effluent and
activated sludge of wastewater treatment plants by using flow cytometry. Water Research 44, 3807-3818.

Foladori, P., Bruni, L., Gianni, A. & Ziglio, G. 2007 Effects of sonication on bacteria viability in wastewater treatment plants
evaluated by flow cytometry — fecal indicators, wastewater and activated sludge. Water Research 41, 235-243.

Franz, E., Semenov, A. V., Termorshulzen, A. J., de Vos, O. J., Bokhorst, J. G. & van Bruggen, H. C. 2008 Manure-amended soil
characteristics affecting the survival of E. coli 0157:H7 in 36 Dutch soils. Environmental Microbiology 10 (2), 313-327.

Gatza, E., Hammes, F. & Prest, E. 2013 Assessing Water Quality with the BD Accurri™ C6 Flow Cytometer. BD Biosciences
White Paper. Available from http://www.umces.edu/sites/default/files/accuri-wp-assessing-water-quality.pdf.

Gillespie, S., Lipphaus, P., Green, J., Parsons, S., Wier, P., Juskowiak, K., Jefferson, B., Jarvis, P. & Nocker, A. 2014 Assessing
microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry. Water
Research 65, 224-234.

Gujarati, D. 2011 Econometrics by Example. Palgrave Macmillan, Hampshire, UK.

Hammes, F., Broger, T., Weilenmann, H.-U., Vital, M., Helbing, J., Bosshart, U., Huber, P., Odermatt, R. P. & Sonnleitner, B.
2012 Development and laboratory-scale testing of a fully automated online flow cytometer for drinking water analysis.
Journal of the International Society or Advancement of Cytometry - Cytometry Part A 81A, 508-516.

Harry, I. S. K., Ameh, E., Coulon, F. & Nocker, A. 2016 Impact of treated sewage effluent on the microbiology of a small brook
using flow cytometry as a diagnostic tool. Water Air Soil Pollution 227, 57.

Higgins, M. J., Chen, Y.-C., Murthy, S. N., Hendrickson, D., Schafer, P. & Farrell, J. 2006 WERF Phase 2: The Impact of
Digestion and Dewatering on Reactivation and Regrowth of Viable but Non-Culturable Indicator Bacteria. WEFTEC,
Dallas.

Higgins, M. J., Chen, Y. C., Murthy, S. N. & Hendrickson, D. 2007a Latest developments on the emerging issue of E. coli and
fecal coliform reactivation and regrowth after dewatering. In Proceedings on Moving Forward Wastewater Biosolids
Sustainability: Technical, Managerial and Public Synergy, pp. 204-219.

Higgins, M. J., Chen, Y. C., Murthy, S. N., Hendrickson, D., Farrel, ]J. & Schafer, P. 2007b Reactivation and growth of non-
culturable indicator bacteria in anaerobically digested biosolids after centrifuge dewatering. Water Research 41, 665-673.

Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B.-Q., Hong, H., Chen, J. & Gao, W. 2014 A critical review of extracellular
polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies.
Journal of Membrane Science 460, 110-125.

Mahendran, B., Lishman, L. & Liss, S. N. 2012 Structural, physiochemical and microbial properties of flocs and biofilms in
integrated fixed-film activated sludge (IFFAS) systems. Water Research 46, 5085-5101.

Marques de S4, J. P. 2007 Applied Statistics Using SPSS, STATISTICA, MATLAB and R. Springer, Berlin.

Monteleone, M. C., Furness, D., Jefferson, B. & Cartmell, E. 2004 Fate of E. coli across mechanical dewatering processes.
Environmental Technology 25, 825-831.

Murate, M., Noor, R., Nagamitsu, H., Tanaka, S. & Yamada, M. 2012 Novel pathway directed by o* to cause cell lysis in
Escherichia coli. Genes to Cells 17, 234-247.

Noor, R. 2015 Mechanism to control the cell lysis and the cell survival strategy in stationary phase under heat stress.
SpringerPlus 4, 599.

Oliver, J. D. 2010 Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiology Reviews 34,
415-425.

Orrufio, M., Garaizabal, I., Arana, I. & Barcina, I. 2013 Validation of a sonication-based method for bacterial dislodgement
from flocs. Journal of Microbiology Research 3 (6), 208-212.

Qi, Y., Dentel, S. K. & Herson, D. S. 2007 Increases in fecal coliform bacteria resulting from centrifugal dewatering of digested
biosolids. Water Research 41, 571-580.

Downloaded from https://iwaponline.com/h2open/article-pdf/2/1/101/571534/h20j0020101.pdf
bv CRANFIELD UNIVERSITY user


http://dx.doi.org/10.2166/wst.2001.0802
http://dx.doi.org/10.1016/j.watres.2011.02.014
http://dx.doi.org/10.1016/j.watres.2011.02.014
http://dx.doi.org/10.2166/wst.2005.0499
http://dx.doi.org/10.2166/wst.2005.0499
http://dx.doi.org/10.2166/wst.2008.005
http://dx.doi.org/10.2166/wst.2008.005
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/755595/mss2003__part_3_604573.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/755595/mss2003__part_3_604573.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/755595/mss2003__part_3_604573.pdf
http://ec.europa.eu/environment/waste/studies/sludge_eval.htm
http://ec.europa.eu/environment/waste/studies/sludge_eval.htm
http://ec.europa.eu/environment/waste/studies/sludge_eval.htm
http://dx.doi.org/10.1016/j.watres.2010.04.027
http://dx.doi.org/10.1016/j.watres.2010.04.027
http://dx.doi.org/10.1016/j.watres.2006.08.021
http://dx.doi.org/10.1016/j.watres.2006.08.021
http://dx.doi.org/10.1111/j.1462-2920.2007.01453.x
http://dx.doi.org/10.1111/j.1462-2920.2007.01453.x
http://www.umces.edu/sites/default/files/accuri-wp-assessing-water-quality.pdf
http://dx.doi.org/10.1016/j.watres.2014.07.029
http://dx.doi.org/10.1016/j.watres.2014.07.029
http://dx.doi.org/10.1002/cyto.a.22048
http://dx.doi.org/10.1007/s11270-015-2723-9
http://dx.doi.org/10.1007/s11270-015-2723-9
http://dx.doi.org/10.1016/j.watres.2006.09.017
http://dx.doi.org/10.1016/j.watres.2006.09.017
http://dx.doi.org/10.1016/j.memsci.2014.02.034
http://dx.doi.org/10.1016/j.memsci.2014.02.034
http://dx.doi.org/10.1016/j.watres.2012.05.058
http://dx.doi.org/10.1016/j.watres.2012.05.058
http://dx.doi.org/10.1080/09593330.2004.9619374
http://dx.doi.org/10.1111/j.1365-2443.2012.01585.x
http://dx.doi.org/10.1111/j.1365-2443.2012.01585.x
http://dx.doi.org/10.1111/j.1365-2443.2012.01585.x
http://dx.doi.org/10.1186/s40064-015-1415-7
http://dx.doi.org/10.1111/j.1574-6976.2009.00200.x
http://dx.doi.org/10.1016/j.watres.2006.11.004
http://dx.doi.org/10.1016/j.watres.2006.11.004

H,Open Journal Vol 2 No 1
112 doi: 10.2166/h20j.2019.028

Shah, F. A,, Mahmood, Q., Shah, M. M., Pervez, A. & Asad, S. A. 2014 Microbial ecology of anaerobic digesters: the key players
of anaerobiosis. The Science World Journal 2014, 1-21.

Shon, H. K. & Vigneswarn, S. 2007 Effluent organic matter (EfOM) in wastewater: constituents, effects, and treatment. Critical
Reviews in Environmental Science and Technology 36, 327-374.

Sigma Aldrich 2016 Microbiology Introduction. Available from: http://www.sigmaaldrich.com/technical-documents/articles/
microbiology/microbiology-introduction.html (accessed 05 July 2018).

Smith, S. R,, Lang, N. L., Cheung, K. H. M. & Spanoudaki, K. 2005 Factors controlling pathogen destruction during anaerobic
digestion of biowastes. Waste Management 25, 417-425.

Sun, F., Hu, W, Pei, H,, Li, X, Xu, X. & Ma, C. 2015 Evaluation on the dewatering process of cyanobacteria-containing AICI5
and PACI drinking water sludge. Separation and Purification Technology 150, 52-62.

Tang, J. Y. M., Glenn, E., Thoen, H. & Escher, B. I. 2012 In vitro bioassay for reactive toxicity towards proteins implemented for
water quality monitoring. Journal of Environmental Monitoring 14, 1073-1081.

Todar, K. 2012 Online Textbook of Bacteriology: Nutrition and Growth of Bacteria. Available from: http://
textbookofbacteriology.net/nutgro.html (accessed 05 July 2018).

Town, J. R,, Links, M. G., Fonstad, T. A. & Dumonceaux, T. ]J. 2004 Molecular characterisation of anaerobic digester microbial
communities identifies microorganisms that correlate to reactor performance. BioResource Technology 151, 249-257.

Downloaded from https://iwaponline.com/h2open/article-pdf/2/1/101/571534/h20j0020101.pdf
bv CRANFIELD UNIVERSITY user


http://dx.doi.org/10.1080/10643380600580011
http://www.sigmaaldrich.com/technical-documents/articles/microbiology/microbiology-introduction.html
http://www.sigmaaldrich.com/technical-documents/articles/microbiology/microbiology-introduction.html
http://www.sigmaaldrich.com/technical-documents/articles/microbiology/microbiology-introduction.html
http://dx.doi.org/10.1016/j.wasman.2005.02.010
http://dx.doi.org/10.1016/j.wasman.2005.02.010
http://dx.doi.org/10.1016/j.seppur.2015.06.030
http://dx.doi.org/10.1016/j.seppur.2015.06.030
http://dx.doi.org/10.1039/c2em10927a
http://dx.doi.org/10.1039/c2em10927a
http://textbookofbacteriology.net/nutgro.html
http://textbookofbacteriology.net/nutgro.html
http://textbookofbacteriology.net/nutgro.html
http://dx.doi.org/10.1016/j.biortech.2013.10.070
http://dx.doi.org/10.1016/j.biortech.2013.10.070

	Disruption of cells in biosolids affects E. coli dynamics in storage
	INTRODUCTION
	METHODOLOGY
	Sludge sampling and storage
	Experimental treatments
	Thermal disruption
	Physical disruption

	Analytical methods
	Microbial enumeration
	Flow cytometry measurement
	Dissolved organic carbon analysis
	Statistical analysis


	RESULTS
	Thermal disruption
	Physical disruption

	DISCUSSION
	Microbial and nutrient response to effects of disruption treatments and growth in subsequent storage

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA ACCESS STATEMENT
	REFERENCES


