14,591 research outputs found

    Interaction of cortical networks mediating object motion detection by moving observers

    Full text link
    Published in final edited form as: Exp Brain Res. 2012 August ; 221(2): 177–189. doi:10.1007/s00221-012-3159-8.The task of parceling perceived visual motion into self- and object motion components is critical to safe and accurate visually guided navigation. In this paper, we used functional magnetic resonance imaging to determine the cortical areas functionally active in this task and the pattern connectivity among them to investigate the cortical regions of interest and networks that allow subjects to detect object motion separately from induced self-motion. Subjects were presented with nine textured objects during simulated forward self-motion and were asked to identify the target object, which had an additional, independent motion component toward or away from the observer. Cortical activation was distributed among occipital, intra-parietal and fronto-parietal areas. We performed a network analysis of connectivity data derived from partial correlation and multivariate Granger causality analyses among functionally active areas. This revealed four coarsely separated network clusters: bilateral V1 and V2; visually responsive occipito-temporal areas, including bilateral LO, V3A, KO (V3B) and hMT; bilateral VIP, DIPSM and right precuneus; and a cluster of higher, primarily left hemispheric regions, including the central sulcus, post-, pre- and sub-central sulci, pre-central gyrus, and FEF. We suggest that the visually responsive networks are involved in forming the representation of the visual stimulus, while the higher, left hemisphere cluster is involved in mediating the interpretation of the stimulus for action. Our main focus was on the relationships of activations during our task among the visually responsive areas. To determine the properties of the mechanism corresponding to the visual processing networks, we compared subjects’ psychophysical performance to a model of object motion detection based solely on relative motion among objects and found that it was inconsistent with observer performance. Our results support the use of scene context (e.g., eccentricity, depth) in the detection of object motion. We suggest that the cortical activation and visually responsive networks provide a potential substrate for this computation.This work was supported by NIH grant RO1NS064100 to L.M.V. We thank Victor Solo for discussions regarding models of functional connectivity and our subjects for participating in the psychophysical and fMRI experiments. This research was carried out in part at the Athinoula A. Martinos Center for Biomedical Imaging at the Massachusetts General Hospital, using resources provided by the Center for Functional Neuroimaging Technologies, P41RR14075, a P41 Regional Resource supported by the Biomedical Technology Program of the National Center for Research Resources (NCRR), National Institutes of Health. This work also involved the use of instrumentation supported by the NCRR Shared Instrumentation Grant Program and/or High-End Instrumentation Grant Program; specifically, grant number S10RR021110. (RO1NS064100 - NIH; National Center for Research Resources (NCRR), National Institutes of Health; S10RR021110 - NCRR)Accepted manuscrip

    Two mechanisms for optic flow and scale change processing of looming

    Full text link
    Published in final edited form as: J Vis. ; 11(3): . doi:10.1167/11.3.5.The detection of looming, the motion of objects in depth, underlies many behavioral tasks, including the perception of self-motion and time-to-collision. A number of studies have demonstrated that one of the most important cues for looming detection is optic flow, the pattern of motion across the retina. Schrater et al. have suggested that changes in spatial frequency over time, or scale changes, may also support looming detection in the absence of optic flow (P. R. Schrater, D. C. Knill, & E. P. Simoncelli, 2001). Here we used an adaptation paradigm to determine whether the perception of looming from optic flow and scale changes is mediated by single or separate mechanisms. We show first that when the adaptation and test stimuli were the same (both optic flow or both scale change), observer performance was significantly impaired compared to a dynamic (non-motion, non-scale change) null adaptation control. Second, we found no evidence of cross-cue adaptation, either from optic flow to scale change, or vice versa. Taken together, our data suggest that optic flow and scale changes are processed by separate mechanisms, providing multiple pathways for the detection of looming.We thank Jonathan Victor and the anonymous reviewers of the paper for feedback and suggestions regarding the stimuli used here. This work was supported by NIH grant R01NS064100 to LMV. (R01NS064100 - NIH)Accepted manuscrip

    MCV/Q, Medical College of Virginia Quarterly, Vol. 10 No. 2

    Get PDF

    volume 17, no. 1 (Fall 2010)

    Get PDF

    Cross-modal cue effects in motion processing

    Full text link
    The everyday environment brings to our sensory systems competing inputs from different modalities. The ability to filter these multisensory inputs in order to identify and efficiently utilize useful spatial cues is necessary to detect and process the relevant information. In the present study, we investigate how feature-based attention affects the detection of motion across sensory modalities. We were interested to determine how subjects use intramodal, cross-modal auditory, and combined audiovisual motion cues to attend to specific visual motion signals. The results showed that in most cases, both the visual and the auditory cues enhance feature-based orienting to a transparent visual motion pattern presented among distractor motion patterns. Whereas previous studies have shown cross-modal effects of spatial attention, our results demonstrate a spread of cross-modal feature-based attention cues, which have been matched for the detection threshold of the visual target. These effects were very robust in comparisons of the effects of valid vs. invalid cues, as well as in comparisons between cued and uncued valid trials. The effect of intramodal visual, cross-modal auditory, and bimodal cues also increased as a function of motion-cue salience. Our results suggest that orienting to visual motion patterns among distracters can be facilitated not only by intramodal priors, but also by feature-based cross-modal information from the auditory system.First author draf

    A preclinical model for the ATLL lymphoma subtype with insights into the role of microenvironment in HTLV-1-mediated lymphomagenesis

    Get PDF
    Abstract \uef7f View references (83) Adult T cell Leukemia/Lymphoma (ATLL) is a mature T cell malignancy associated with Human T cell Leukemia Virus type 1 (HTLV-1) infection. Among its four main clinical subtypes, the prognosis of acute and lymphoma variants remains poor. The long latency (3-6 decades) and low incidence (3-5%) of ATLL imply the involvement of viral and host factors in full-blown malignancy. Despite multiple preclinical and clinical studies, the contribution of the stromal microenvironment in ATLL development is not yet completely unraveled. The aims of this study were to investigate the role of the host microenvironment, and specifically fibroblasts, in ATLL pathogenesis and to propose a murine model for the lymphoma subtype. Here we present evidence that the oncogenic capacity of HTLV-1-immortalized C91/PL cells is enhanced when they are xenotransplanted together with human foreskin fibroblasts (HFF) in immunocompromised BALB/c Rag2-/-\u3b3c -/-mice. Moreover, cell lines derived from a developed lymphoma and their subsequent in vivo passages acquired the stable property to induce aggressive T cell lymphomas. In particular, one of these cell lines, C91/III cells, consistently induced aggressive lymphomas also in NOD/SCID/IL2R\u3b3c KO (NSG) mice. To dissect the mechanisms linked to this enhanced tumorigenic ability, we quantified 45 soluble factors released by these cell lines and found that 21 of them, mainly pro-inflammatory cytokines and chemokines, were significantly increased in C91/III cells compared to the parental C91/PL cells. Moreover, many of the increased factors were also released by human fibroblasts and belonged to the known secretory pattern of ATLL cells. C91/PL cells co-cultured with HFF showed features reminiscent of those observed in C91/III cells, including a similar secretory pattern and a more aggressive behavior in vivo. On the whole, our data provide evidence that fibroblasts, one of the major stromal components, might enhance tumorigenesis of HTLV-1-infected and immortalized T cells, thus throwing light on the role of microenvironment contribution in ATLL pathogenesis. We also propose that the lymphoma induced in NSG mice by injection with C91/III cells represents a new murine preclinical ATLL model that could be adopted to test novel therapeutic interventions for the aggressive lymphoma subtype

    Industrial engineering in Spain, the challenge of a new liberal profession in the nineteenth century

    Get PDF
    Industrial engineering was established in Spain in 1850. Despite the initial difficulties, the profession found its role in the process of the industrialization of Spain. The industrial engineers were the first free professionals in the world of engineerin g, given that there was not a State Corps linked to them. In this sense, there are some similarities between the Spanish industrial engineers and the French Centraliens . Moreover, the educational system developed in Spain in the nineteenth century gave lit tle autonomy to the engineering schools, and this was a major difference from the French onesPostprint (published version
    • …
    corecore