3,735 research outputs found

    Calibration approaches for distributed hydrologic models in poorly gaged basins: implication for streamflow projections under climate change

    Get PDF
    Abstract. This study tests the performance and uncertainty of calibration strategies for a spatially distributed hydrologic model in order to improve model simulation accuracy and understand prediction uncertainty at interior ungaged sites of a sparsely gaged watershed. The study is conducted using a distributed version of the HYMOD hydrologic model (HY-MOD_DS) applied to the Kabul River basin. Several calibration experiments are conducted to understand the benefits and costs associated with different calibration choices, including (1) whether multisite gaged data should be used simultaneously or in a stepwise manner during model fitting, (2) the effects of increasing parameter complexity, and (3) the potential to estimate interior watershed flows using only gaged data at the basin outlet. The implications of the different calibration strategies are considered in the context of hydrologic projections under climate change. To address the research questions, high-performance computing is utilized to manage the computational burden that results from high-dimensional optimization problems. Several interesting results emerge from the study. The simultaneous use of multisite data is shown to improve the calibration over a stepwise approach, and both multisite approaches far exceed a calibration based on only the basin outlet. The basin outlet calibration can lead to projections of mid-21st century streamflow that deviate substantially from projections under multisite calibration strategies, supporting the use of caution when using distributed models in data-scarce regions for climate change impact assessments. Surprisingly, increased parameter complexity does not substantially increase the uncertainty in streamflow projections, even though parameter equifinality does emerge. The results suggest that increased (excessive) parameter complexity does not always lead to increased predictive uncertainty if structural uncertainties are present. The largest uncertainty in future streamflow results from variations in projected climate between climate models, which substantially outweighs the calibration uncertainty

    Electronic structures of Zn1x_{1-x}Cox_xO using photoemission and x-ray absorption spectroscopy

    Full text link
    Electronic structures of Zn1x_{1-x}Cox_xO have been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Co 3d states are found to lie near the top of the O 2p2p valence band, with a peak around 3\sim 3 eV binding energy. The Co 2p2p XAS spectrum provides evidence that the Co ions in Zn1x_{1-x}Cox_{x}O are in the divalent Co2+^{2+} (d7d^7) states under the tetrahedral symmetry. Our finding indicates that the properly substituted Co ions for Zn sites will not produce the diluted ferromagnetic semiconductor property.Comment: 3 pages, 2 figure

    Spontaneous dural tear leading to intracranial hypotension and tonsillar herniation in Marfan syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We describe the case of a 38 year old male with Marfan syndrome who presented with orthostatic headaches and seizures.</p> <p>Case Presentation</p> <p>The patient was diagnosed with Spontaneous Intracranial Hypotension secondary to CSF leaks, objectively demonstrated by MR Myelogram with intrathecal contrast. Epidural autologus blood patch was administered at the leakage site leading to significant improvement.</p> <p>Conclusion</p> <p>Our literature search shows that this is the second reported case of a Marfan patient presenting with symptomatic spontaneous CSF leaks along with tonsillar herniation.</p

    Photoemission and x-ray absorption spectroscopy study of electron-doped colossal magnetoresistance manganite: La0.7Ce0.3MnO3 film

    Full text link
    The electronic structure of La0.7Ce0.3MnO3 (LCeMO) thin film has been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Ce 3d core-level PES and XAS spectra of LCeMO are very similar to those of CeO2, indicating that Ce ions are far from being trivalent. A very weak 4f resonance is observed around the Ce 4d \to 4f absorption edge, suggesting that the localized Ce 4f states are almost empty in the ground state. The Mn 2p XAS spectrum reveals the existence of the Mn(2+) multiplet feature, confirming the Mn(2+)-Mn(3+) mixed-valent states of Mn ions in LCeMO. The measured Mn 3d PES/XAS spectra for LCeMO agrees reasonably well with the calculated Mn 3d PDOS using the LSDA+U method. The LSDA+U calculation predicts a half-metallic ground state for LCeMO.Comment: 7 pages, 7 figure

    HMGA1 Modulates Gene Transcription Sustaining a Tumor Signalling Pathway Acting on the Epigenetic Status of Triple-Negative Breast Cancer Cells

    Get PDF
    Chromatin accessibility plays a critical factor in regulating gene expression in cancer cells. Several factors, including the High Mobility Group A (HMGA) family members, are known to participate directly in chromatin relaxation and transcriptional activation. The HMGA1 oncogene encodes an architectural chromatin transcription factor that alters DNA structure and interacts with transcription factors favouring their landing onto transcription regulatory sequences. Here, we provide evidence of an additional mechanism exploited by HMGA1 to modulate transcription. We demonstrate that, in a triple-negative breast cancer cellular model, HMGA1 sustains the action of epigenetic modifiers and in particular it positively influences both histone H3S10 phosphorylation by ribosomal protein S6 kinase alpha-3 (RSK2) and histone H2BK5 acetylation by CREB-binding protein (CBP). HMGA1, RSK2, and CBP control the expression of a set of genes involved in tumor progression and epithelial to mesenchymal transition. These results suggest that HMGA1 has an effect on the epigenetic status of cancer cells and that it could be exploited as a responsiveness predictor for epigenetic therapies in triple-negative breast cancers

    Prevention of sexual transmission of mpox: a systematic review and qualitative evidence synthesis of approaches.

    Get PDF
    BACKGROUND: The ongoing multi-country mpox outbreak in previously unaffected countries is primarily affecting sexual networks of men who have sex with men. Evidence is needed on the effectiveness of recommended preventive interventions. To inform WHO guidelines, a systematic review and qualitative evidence synthesis were conducted on mpox preventive behavioural interventions to reduce: (i) sexual acquisition; (ii) onward sexual transmission from confirmed/probable cases; and (iii) utility of asymptomatic testing. METHODS: Medline, EMBASE, PubMed, Cochrane and WHO trial databases, grey literature and conferences were searched for English-language primary research published since 1 January 2022. A reviewer team performed screening, data extraction and bias assessment. A qualitative thematic synthesis explored views and experiences of engagement in prevention in individuals at increased risk. RESULTS: There were 16 studies: 1 on contact-tracing, 2 on sexual behaviour, and 13 on asymptomatic testing. Although MPXV was detected in varying proportions of samples (0.17%-6.5%), the testing studies provide insufficient evidence to fully evaluate this strategy. For the qualitative evidence synthesis, four studies evaluated the experiences of most affected communities. Preferences about preventive interventions were shaped by: mpox information; the diversity of sexual practices; accessibility and quality of mpox testing and care; and perceived cost to wellbeing. CONCLUSIONS: Evidence on the effectiveness of interventions to prevent the sexual transmission of mpox remains scarce. Limited qualitative evidence on values and preferences provides insight into factors influencing intervention acceptability. Given global and local inequities in access to vaccines and treatment, further research is needed to establish the effectiveness of additional interventions

    Suppressed Hysteretic Field Emission from Polymer Encapsulated Silver Nanowires

    Get PDF
    Suppression of the hysteretic electron emission in one-dimensional nanomaterial-based electron sources remains a critical barrier preventing their wide scale adoption in various vacuum electronics applications. Here, we report on the suppressed hysteretic performance, and its photo-dependence from conformal poly-vinylpyrrolidone encapsulated percolative Ag nanowire-based electron sources.This work was supported in part by the Oppenheimer Research Trust, Cambridge University, and an Impact Acceleration grant from the Engineering and Physical Sciences Research Council
    corecore