129 research outputs found

    SILAR-Based Application of Various Nanopillars on GaN-Based LED to Enhance Light-Extraction Efficiency

    Get PDF
    We reported the various nanopillars on GaN-based LED to enhance light-extraction efficiency prepared by successive ionic layer adsorption and reaction method (SILAR). Indium tin oxide (ITO) with thickness of 1 Όm as transparent contact layer was grown to improve the electrical characteristics of the LEDs, including series resistance and operating voltage. SILAR-deposition ZnO nanoparticles on SiO2 were used as etching nanomasks. Multiple nanopillars were simultaneously formed on overall surfaces of ITO p- and n-GaN by ICP etching. The proposed GaN-based LEDs with nanopillars increase light output power by 7%–20.3% (at 20 mA) over that of regular GaN-based LEDs. The difference in light output power can be attributed to differences in materials and shapes of nanopillars, resulting in a reduction in Fresnel reflection by the roughened surface of GaN-based LEDs

    SiO 2

    Get PDF
    We reported the SiO2 nanopillars on microscale roughened surface on GaN-based LED to enhance light-extraction efficiency. ZnO nanoparticles were deposited on SiO2 as an etching mask before ICP etching SiO2 by successive ionic layer adsorption and reaction method (SILAR), and the different heights of SiO2 nanopillars on microroughened ITO/GaN were obtained after etching. Compared to a regular (flat surface) GaN-based LED, the light output power for a LED with microroughening was increased by 33%. Furthermore, the proposed LEDs with SiO2 nanopillars on microroughened surface show the enhancement in light output power by 42.7%–49.1% at 20 mA. The increase in light output power is mostly attributed to reduction in Fresnel reflection by rough surface. The height of SiO2 nanopillars was increasing cause resulting in more rough on the microscale surface of GaN-based LEDs

    On two dimensional coupled bosons and fermions

    Full text link
    We study complex bosons and fermions coupled through a generalized Yukawa type coupling in the large-N_c limit following ideas of Rajeev [Int. Jour. Mod. Phys. A 9 (1994) 5583]. We study a linear approximation to this model. We show that in this approximation we do not have boson-antiboson and fermion-antifermion bound states occuring together. There is a possibility of having only fermion-antifermion bound states. We support this claim by finding distributional solutions with energies lower than the two mass treshold in the fermion sector. This also has implications from the point of view of scattering theory to this model. We discuss some aspects of the scattering above the two mass treshold of boson pairs and fermion pairs. We also briefly present a gauged version of the same model and write down the linearized equations of motion.Comment: 25 pages, no figure

    Large N limit of SO(N) gauge theory of fermions and bosons

    Get PDF
    In this paper we study the large N_c limit of SO(N_c) gauge theory coupled to a Majorana field and a real scalar field in 1+1 dimensions extending ideas of Rajeev. We show that the phase space of the resulting classical theory of bilinears, which are the mesonic operators of this theory, is OSp_1(H|H )/U(H_+|H_+), where H|H refers to the underlying complex graded space of combined one-particle states of fermions and bosons and H_+|H_+ corresponds to the positive frequency subspace. In the begining to simplify our presentation we discuss in detail the case with Majorana fermions only (the purely bosonic case is treated in our earlier work). In the Majorana fermion case the phase space is given by O_1(H)/U(H_+), where H refers to the complex one-particle states and H_+ to its positive frequency subspace. The meson spectrum in the linear approximation again obeys a variant of the 't Hooft equation. The linear approximation to the boson/fermion coupled case brings an additonal bound state equation for mesons, which consists of one fermion and one boson, again of the same form as the well-known 't Hooft equation.Comment: 27 pages, no figure

    Boson--fermion bound states in two dimensional QCD

    Get PDF
    We derive the boson--fermion bound state equation in a two dimensional gauge theory in the large--\nc limit. We analyze the properties of this equation and in particular, find that the mass trajectory is linear with respect to the bound state level for the higher mass states.Comment: 5pp, 2 figs (as a separate file), TIT/HEP-23

    Supergrassmannian and large N limit of quantum field theory with bosons and fermions

    Get PDF
    We study a large N_{c} limit of a two-dimensional Yang-Mills theory coupled to bosons and fermions in the fundamental representation. Extending an approach due to Rajeev we show that the limiting theory can be described as a classical Hamiltonian system whose phase space is an infinite-dimensional supergrassmannian. The linear approximation to the equations of motion and the constraint yields the 't Hooft equations for the mesonic spectrum. Two other approximation schemes to the exact equations are discussed.Comment: 24 pages, Latex; v.3 appendix added, typos corrected, to appear in JM

    Reliability and Validity of the HD-PRO-TriadTM, a Health-Related Quality of Life Measure Designed to Assess the Symptom Triad of Huntington\u27s Disease.

    Get PDF
    BACKGROUND: Huntington\u27s disease (HD), is a neurodegenerative disorder that is associated with cognitive, behavioral, and motor impairments that diminish health related quality of life (HRQOL). The HD-PRO-TRIADTM is a quality of life measure that assesses health concerns specific to individuals with HD. Preliminary psychometric characterization was limited to a convenience sample of HD participants who completed measures at home so clinician-ratings were unavailable. OBJECTIVES: The current study evaluates the reliability and validity of the HD-PRO-TRIADTM in a well-characterized sample of individuals with HD. METHODS: Four-hundred and eighty-two individuals with HD (n = 192 prodromal, n = 193 early, and n = 97 late) completed the HD-PRO-TRIADTM questionnaire. Clinician-rated assessments from the Unified Huntington Disease Rating Scales, the short Problem Behaviors Assessment, and three generic measures of HRQOL (WHODAS 2.0, RAND-12, and EQ-5D) were also examined. RESULTS: Internal reliability for all domains and the total HD-PRO-TRIADTM was excellent (all Cronbach\u27s α \u3e0.93). Convergent and discriminant validity were supported by significant associations between the HD-PRO-TRIADTM domains, and other patient reported outcome measures as well as clinician-rated measures. Known groups validity was supported as the HD-PRO-TRIADTM differentiated between stages of the disease. Floor and ceiling effects were generally within acceptable limits. There were small effect sizes for 12-month change over time and moderate effect sizes for 24-month change over time. CONCLUSIONS: Findings support excellent internal reliability, convergent and discriminant validity, known groups validity, and responsiveness to change over time. The current study supports the clinical efficacy of the HD-PRO-TRIADTM. Future research is needed to assess the test-retest reliability of this measure

    Mass Spectra of Supersymmetric Yang-Mills Theories in 1+1 Dimensions

    Get PDF
    Physical mass spectra of supersymmetric Yang-Mills theories in 1+1 dimensions are evaluated in the light-cone gauge with a compact spatial dimension. The supercharges are constructed and the infrared regularization is unambiguously prescribed for supercharges, instead of the light-cone Hamiltonian. This provides a manifestly supersymmetric infrared regularization for the discretized light-cone approach. By an exact diagonalization of the supercharge matrix between up to several hundred color singlet bound states, we find a rapidly increasing density of states as mass increases.Comment: LaTeX file, 32 page, 7 eps figure

    Agreement Between Clinician-Rated Versus Patient-Reported Outcomes in Huntington Disease

    Get PDF
    BACKGROUND: Clinician-rated measures of functioning are often used as primary endpoints in clinical trials and other behavioral research in Huntington disease. As study costs for clinician-rated assessments are not always feasible, there is a question of whether patient self-report of commonly used clinician-rated measures may serve as acceptable alternatives in low risk behavioral trials. AIM: The purpose of this paper was to determine the level of agreement between self-report and clinician-ratings of commonly used functional assessment measures in Huntington disease. DESIGN: 486 participants with premanifest or manifest Huntington disease were examined. Total Functional Capacity, Functional Assessment, and Independence Scale assessments from the Unified Huntington Disease Rating scale were completed by clinicians; a self-report version was also completed by individuals with Huntington disease. Cronbach\u27s α was used to examine internal consistency, one-way analysis of variance was used to examine group differences, and paired t tests, kappa agreement coefficients, and intra-class correlations were calculated to determine agreement between raters. RESULTS: Internal consistency for self-reported ratings of functional capacity and ability were good. There were significant differences between those with premanifest, early-, and late-stage disease; those with later-stage disease reported less ability and independence than the other clinical groups. Although self-report ratings were not a perfect match with associated clinician-rated measures, differences were small. Cutoffs for achieving specified levels of agreement are provided. CONCLUSIONS: Depending on the acceptable margin of error in a study, self-reported administration of these functional assessments may be appropriate when clinician-related assessments are not feasible

    1+1 dimensional QCD with fundamental bosons and fermions

    Get PDF
    We analyze the properties of mesons in 1+1 dimensional QCD with bosonic and fermionic ``quarks'' in the large \nc limit. We study the spectrum in detail and show that it is impossible to obtain massless mesons including boson constituents in this model. We quantitatively show how the QCD mass inequality is realized in two dimensional QCD. We find that the mass inequality is close to being an equality even when the quarks are light. Methods for obtaining the properties of ``mesons'' formed from boson and/or fermion constituents are formulated in an explicit manner convenient for further study. We also analyze how the physical properties of the mesons such as confinement and asymptotic freedom are realized.Comment: 20 pages, harvmac, 5 figure
    • 

    corecore