In this paper we study the large N_c limit of SO(N_c) gauge theory coupled to
a Majorana field and a real scalar field in 1+1 dimensions extending ideas of
Rajeev. We show that the phase space of the resulting classical theory of
bilinears, which are the mesonic operators of this theory, is OSp_1(H|H
)/U(H_+|H_+), where H|H refers to the underlying complex graded space of
combined one-particle states of fermions and bosons and H_+|H_+ corresponds to
the positive frequency subspace. In the begining to simplify our presentation
we discuss in detail the case with Majorana fermions only (the purely bosonic
case is treated in our earlier work). In the Majorana fermion case the phase
space is given by O_1(H)/U(H_+), where H refers to the complex one-particle
states and H_+ to its positive frequency subspace. The meson spectrum in the
linear approximation again obeys a variant of the 't Hooft equation. The linear
approximation to the boson/fermion coupled case brings an additonal bound state
equation for mesons, which consists of one fermion and one boson, again of the
same form as the well-known 't Hooft equation.Comment: 27 pages, no figure