12,657 research outputs found

    New Insights on Interstellar Gas-Phase Iron

    Full text link
    In this paper, we report on the gas-phase abundance of singly-ionized iron (Fe II) for 51 lines of sight, using data from the Far Ultraviolet Spectroscopic Explorer (FUSE). Fe II column densities are derived by measuring the equivalent widths of several ultraviolet absorption lines and subsequently fitting those to a curve of growth. Our derivation of Fe II column densities and abundances creates the largest sample of iron abundances in moderately- to highly-reddened lines of sight explored with FUSE, lines of sight that are on average more reddened than lines of sight in previous Copernicus studies. We present three major results. First, we observe the well-established correlation between iron depletion and and also find trends between iron depletion and other line of sight parameters (e.g. f(H_2), E_(B-V), and A_V), and examine the significance of these trends. Of note, a few of our lines of sight probe larger densities than previously explored and we do not see significantly enhanced depletion effects. Second, we present two detections of an extremely weak Fe II line at 1901.773 A in the archival STIS spectra of two lines of sight (HD 24534 and HD 93222). We compare these detections to the column densities derived through FUSE spectra and comment on the line's f-value and utility for future studies of Fe II. Lastly, we present strong anecdotal evidence that the Fe II f-values derived empirically through FUSE data are more accurate than previous values that have been theoretically calculated, with the probable exception of f_1112.Comment: Accepted for publication in ApJ, 669, 378; see ApJ version for small updates. 53 total pages (preprint format), 7 tables, 11 figure

    On The Reddening in X-ray Absorbed Seyfert 1 Galaxies

    Get PDF
    There are several Seyfert galaxies for which there is a discrepancy between the small column of neutral hydrogen deduced from X-ray observations and the much greater column derived from the reddening of the optical/UV emission lines and continuum. The standard paradigm has the dust within the highly ionized gas which produces O~VII and O~VIII absorption edges (i.e., a ``dusty warm absorber''). We present an alternative model in which the dust exists in a component of gas in which hydrogen has been stripped, but which is at too low an ionization state to possess significant columns of O~VII and O~VIII (i.e, a ``lukewarm absorber''). The lukewarm absorber is at sufficient radial distance to encompass much of the narrow emission-line region, and thus accounts for the narrow-line reddening, unlike the dusty warm absorber. We test the model by using a combination of photoionization models and absorption edge fits to analyze the combined ROSAT/ASCA dataset for the Seyfert 1.5 galaxy, NGC 3227. We show that the data are well fit by a combination of the lukewarm absorber and a more highly ionized component similar to that suggested in earlier studies. We predict that the lukewarm absorber will produce strong UV absorption lines of N V, C IV, Si IV and Mg II. Finally, these results illustrate that singly ionized helium is an important, and often overlooked, source of opacity in the soft X-ray band (100 - 500 eV).Comment: 17 pages, Latex, includes 1 figure (encapsulated postscript), one additional table in Latex (landscape format), to appear in the Astrophysical Journa

    VLT/UVES Observations of Interstellar Molecules and Diffuse Bands in the Magellanic Clouds

    Full text link
    We discuss the abundances of interstellar CH, CH+, and CN in the Magellanic Clouds (MC), derived from spectra of 7 SMC and 13 LMC stars obtained (mostly) with the VLT/UVES. CH and/or CH+ are detected toward 3 SMC and 9 LMC stars; CN is detected toward 2 stars. In the MC, the CH/H2 ratio is comparable to that found for diffuse Galactic molecular clouds in some sight lines, but is lower by factors up to 10-15 in others. The abundance of CH in the MC thus appears to depend on local physical conditions -- and not just on metallicity. The observed relationships between the column density of CH and those of CN, CH+, Na I, and K I in the MC are generally consistent with the trends observed in our Galaxy. Using existing data for the rotational populations of H2, we estimate temperatures, radiation field strengths, and local hydrogen densities for the diffuse molecular gas. Densities estimated from N(CH), assuming that CH is produced via steady-state gas-phase reactions, are considerably higher; much better agreement is found by assuming that the CH is made via the (still undetermined) process(es) responsible for the observed CH+. The UVES spectra also reveal absorption from the diffuse interstellar bands at 5780, 5797, and 6284 A in the MC. On average, the three DIBs are weaker by factors of 7-9 (LMC) and about 20 (SMC), compared to those observed in Galactic sight lines with similar N(H I), and by factors of order 2-6, relative to E(B-V), N(Na I), and N(K I). The detection of several of the ``C2 DIBs'', with strengths similar to those in comparable Galactic sight lines, however, indicates that no single, uniform scaling factor (e.g., one related to metallicity) applies to all DIBs (or all sight lines) in the MC. (abstract abridged)Comment: 59 pages, 15 figures, 10 tables; aastex; accepted to ApJ

    Observations of rotationally resolved C3 in translucent sight lines

    Full text link
    The rotationally resolved spectrum of the A ^1Pi_u <- X ^1Sigma^+_g 000-000 transition of C3, centered at 4051.6A, has been observed along 10 translucent lines of sight. To interpret these spectra, a new method for the determination of column densities and analysis of excitation profiles involving the simulation and fitting of observed spectra has been developed. The populations of lower rotational levels (J<14) in C3 are best fit by thermal distributions that are consistent with the kinetic temperatures determined from the excitation profile of C2. Just as in the case of C2, higher rotational levels (J>14) of C3 show increased nonthermal population distributions in clouds which have been determined to have total gas densities below ~500 cm-3.Comment: 12 pages, 4 figures, accepted for publication in The Astrophysical Journa

    Abundances and Physical Conditions in the Interstellar Gas toward HD 192 639

    Full text link
    We present a study of the abundances and physical conditions in the interstellar gas toward the heavily reddened star HD 192639 [E_(B-V) = 0.64], based on analysis of FUSE and HST/STIS spectra covering the range from 912 to 1361 A. This work constitutes a survey of the analyses that can be performed to study the interstellar gas when combining data from different instruments. Low-velocity (-18 to -8 km/s) components are seen primarily for various neutral and singly ionized species such as C I, O I, S I, Mg II, Cl I, Cl II, Mn II, Fe II and Cu II. Numerous lines of H2 are present in the FUSE spectra, with a kinetic temperature for the lowest rotational levels T_(01) = (90 +/- 10) K. Analysis of the C I fine-structure excitation implies an average local density of hydrogen n_H = (16 +/- 3) cm^-3. The average electron density, derived from five neutral/first ion pairs under the assumption of photoionization equilibrium, is n_e = (0.11 +/- 0.02) cm^-3. The relatively complex component structure seen in high-resolution spectra of K I and Na I, the relatively low average density, and the measured depletions all suggest that the line of sight contains a number of diffuse clouds, rather than a single dense, translucent cloud. Comparisons of the fractions of Cl in Cl I and of hydrogen in molecular form suggest a higher molecular fraction, in the region(s) where H2 is present, than that derived considering the average line of sight. In general, such comparisons may allow the identification and characterization of translucent portions of such complex lines of sight. The combined data also show high-velocity components near -80 km/s for various species which appear to be predominantly ionized, and may be due to a radiative shock. A brief overview of the conditions in this gas will be given.Comment: 37 pages, accepted for publication in Ap

    Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics

    Get PDF
    Nest construction is taxonomically widespread, yet our understanding of adaptive intraspecific variation in nest design remains poor. Nest characteristics are expected to vary adaptively in response to predictable variation in spring temperatures over large spatial scales, yet such variation in nest design remains largely overlooked, particularly amongst open-cup-nesting birds. Here, we systematically examined the effects of latitudinal variation in spring temperatures and precipitation on the morphology, volume, composition, and insulatory properties of open-cup-nesting Common Blackbirds’ Turdus merula nests to test the hypothesis that birds living in cooler environments at more northerly latitudes would build better insulated nests than conspecifics living in warmer environments at more southerly latitudes. As spring temperatures increased with decreasing latitude, the external diameter of nests decreased. However, as nest wall thickness also decreased, there was no variation in the diameter of the internal nest cups. Only the mass of dry grasses within nests decreased with warmer temperatures at lower latitudes. The insulatory properties of nests declined with warmer temperatures at lower latitudes and nests containing greater amounts of dry grasses had higher insulatory properties. The insulatory properties of nests decreased with warmer temperatures at lower latitudes, via changes in morphology (wall thickness) and composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude, and none of the nest characteristics varied with spring precipitation. This suggests that Common Blackbirds nesting at higher latitudes were building nests with thicker walls in order to counteract the cooler temperatures. We have provided evidence that the nest construction behavior of open-cup-nesting birds systematically varies in response to large-scale spatial variation in spring temperatures

    A Current Mode Detector Array for Gamma-Ray Asymmetry Measurements

    Full text link
    We have built a CsI(Tl) gamma-ray detector array for the NPDGamma experiment to search for a small parity-violating directional asymmetry in the angular distribution of 2.2 MeV gamma-rays from the capture of polarized cold neutrons by protons with a sensitivity of several ppb. The weak pion-nucleon coupling constant can be determined from this asymmetry. The small size of the asymmetry requires a high cold neutron flux, control of systematic errors at the ppb level, and the use of current mode gamma-ray detection with vacuum photo diodes and low-noise solid-state preamplifiers. The average detector photoelectron yield was determined to be 1300 photoelectrons per MeV. The RMS width seen in the measurement is therefore dominated by the fluctuations in the number of gamma rays absorbed in the detector (counting statistics) rather than the intrinsic detector noise. The detectors were tested for noise performance, sensitivity to magnetic fields, pedestal stability and cosmic background. False asymmetries due to gain changes and electronic pickup in the detector system were measured to be consistent with zero to an accuracy of 10910^{-9} in a few hours. We report on the design, operating criteria, and the results of measurements performed to test the detector array.Comment: 33 pages, 20 figures, 2 table

    Evolution of magnetic polarons and spin-carrier interactions through the metal-insulator transition in Eu1x_{1-x}Gdx_{x}O

    Full text link
    Raman scattering studies as functions of temperature, magnetic field, and Gd-substitution are used to investigate the evolution of magnetic polarons and spin-carrier interactions through the metal-insulator transition in Eu1x_{1-x}Gdx_{x}O. These studies reveal a greater richness of phase behavior than have been previously observed using transport measurements: a spin-fluctuation-dominated paramagnetic (PM) phase regime for T >> T^{*} >> TC_{C}, a two-phase regime for T << T^{*} in which magnetic polarons develop and coexist with a remnant of the PM phase, and an inhomogeneous ferromagnetic phase regime for T << TC_{C}

    FUSE Measurements of Far Ultraviolet Extinction. I. Galactic Sight Lines

    Full text link
    We present extinction curves that include data down to far ultraviolet wavelengths (FUV; 1050 - 1200 A) for nine Galactic sight lines. The FUV extinction was measured using data from the Far Ultraviolet Spectroscopic Explorer. The sight lines were chosen for their unusual extinction properties in the infrared through the ultraviolet; that they probe a wide range of dust environments is evidenced by the large spread in their measured ratios of total-to-selective extinction, R_V = 2.43 - 3.81. We find that extrapolation of the Fitzpatrick & Massa relationship from the ultraviolet appears to be a good predictor of the FUV extinction behavior. We find that predictions of the FUV extinction based upon the Cardelli, Clayton & Mathis (CCM) dependence on R_V give mixed results. For the seven extinction curves well represented by CCM in the infrared through ultraviolet, the FUV extinction is well predicted in three sight lines, over-predicted in two sight lines, and under-predicted in 2 sight lines. A Maximum Entropy Method analysis using a simple three component grain model shows that seven of the nine sight lines in the study require a larger fraction of grain materials to be in dust when FUV extinction is included in the models. Most of the added grain material is in the form of small (radii < 200 A) grains.Comment: Accepted for publication in the Astrophysical Journal. 31 pages with 7 figure
    corecore