472 research outputs found

    ALFA: First Operational Experience of the MPE/MPIA Laser Guide Star System for Adaptive Optics

    Get PDF
    The sodium laser guide star adaptive optics system ALFA has been constructed at the Calar Alto 3.5-m telescope. Following the first detection of the laser beacon on the wavefront sensor in 1997 the system is now being optimized for best performance. In this contribution we discuss the current status of the launch beam and the planned improvements and upgrades. We report on the performance level achieved when it is used with the adaptive optics system, and relate various aspects of our experience during operation of the system. We have begun to produce scientific results and mention two of these.Comment: 9 pages, 6 figures, LaTeX (spie.sty). SPIE conf proc 3353, Adaptive Optical System Technologies, March 199

    On insertion-deletion systems over relational words

    Full text link
    We introduce a new notion of a relational word as a finite totally ordered set of positions endowed with three binary relations that describe which positions are labeled by equal data, by unequal data and those having an undefined relation between their labels. We define the operations of insertion and deletion on relational words generalizing corresponding operations on strings. We prove that the transitive and reflexive closure of these operations has a decidable membership problem for the case of short insertion-deletion rules (of size two/three and three/two). At the same time, we show that in the general case such systems can produce a coding of any recursively enumerable language leading to undecidabilty of reachability questions.Comment: 24 pages, 8 figure

    Cell-Free Synthesis of the Mitochondrial ADP/ATP Carrier Protein of Neurospora crassa

    Get PDF
    ADP/ATP carrier protein was synthesized in heterologous cell-free systems programmed with Neurospora poly(A)-containing RNA and homologous cell-free systems from Neurospora. The apparent molecular weight of the product obtained in vitro was the same as that of the authentic mitochondrial protein. The primary translation product obtained in reticulocyte lysates starts with formylmethionine when formylated initiator methionyl-tRNA (fMet-tRNAfMet) was present. The product synthesized in vitro was released from the ribosomes into the postribosomal supernatant. The evidence presented indicates that the ADP/ATP carrier is synthesized as a polypeptide with the same molecular weight as the mature monomeric protein and does not carry an additional sequence

    Evaluating Oceanic Uptake of Atmospheric CCl4: A Combined Analysis of Model Simulations and Observations

    Get PDF
    We provide new estimates of the air‐sea flux of CCl4 using simulations from a global ocean biogeochemistry model (NEMO‐PlankTOM) in combination with depth‐resolved CCl4 observations from global oceanic databases. Estimates of global oceanic CCl4 uptake are derived from a range of model analyses, including prescribed parameterizations using reported values on hydrolysis and degradation, and analyses optimized using the global observational databases. We evaluate the sensitivity of our results to uncertainties in air‐sea gas exchange parameterization, estimation period, and circulation processes. Our best constrained estimate of ocean CCl4 uptake for the period 1996–2000 is 20.1 Gg/year (range 16.6–22.7), corresponding to estimates of the partial atmospheric lifetime with respect to ocean uptake of 124 (110–150) years. This new oceanic lifetime implies higher emissions of CCl4 than currently estimated and therefore a larger missing atmospheric source of CCl4

    Transport of Proteins into Mitochondria

    Get PDF
    The mitochondrial ADP/ATP carrier is an integral transmembrane protein of the inner membrane. It is synthesized on cytoplasmic ribosomes. Kinetic data suggested that this protein is transferred into mitochondria in a posttranslational manner. The following results provide further evidence for such a mechanism and provide information on its details. 1. In homologous and heterologous translation systems the newly synthesized ADP/ATP carrier protein is present in the postribosomal supernatant. 2. Analysis by density gradient centrifugation and gel filtration shows, that the ADP/ATP carrier molecules in the postribosomal fraction are present as soluble complexes with apparent molecular weights of about 120000 and 500000 or larger. The carrier binds detergents such as Triton X-100 and deoxycholate forming mixed micelles with molecular weights of about 200000–400000. 3. Incubation of a postribosomal supernatant of a reticulocyte lysate containing newly synthesized ADP/ATP carrier with mitochondria isolated from Neurospora spheroplasts results in efficient transfer of the carrier into mitochondria. About 20–30% of the transferred carrier are resistant to proteinase in whole mitochondria. The authentic mature protein is also largely resistant to proteinase in whole mitochondria and sensitive after lysis of mitochondria with detergent. Integrity of mitochondria is a prerequisite for translocation into proteinase resistant position. 4. The transfer in vitro into a proteinase-resistant form is inhibited by the uncoupler carbonyl-cyanide m-chlorophenylhydrazone but not the proteinase-sensitive binding. These observations suggest that the posttranslational transfer of ADP/ATP carrier occurs via the cytosolic space through a soluble oligomeric precursor form. This precursor is taken up by intact mitochondria into an integral position in the membrane. These findings are considered to be of general importance for the intracellular transfer of insoluble membrane proteins. They support the view that such proteins can exist in a water-soluble form its precursors and upon integration into the membrane undergo a conformational change. Uptake into the membrane may involve the cleavage of an additional sequence in some proteins, but this appears not to be a prerequisite as demonstrated by the ADP/ATP carrier protein

    Different Transport Pathways of Individual Precursor Proteins in Mitochondria

    Get PDF
    Transport of mitochondrial precursor proteins into mitochondria of Neurospora crassa was studied in a cellfree reconstituted system. Precursors were synthesized in a reticulocyte lysate programmed with Neurospora mRNA and transported into isolated mitochondria in the absence of protein synthesis. Uptake of the following precursors was investigated: apocytochrome c, ADP/ATP carrier and subunit 9 of the oligomycin-sensitive ATPase. Addition of high concentrations of unlabelled chemically prepared apocytochrome c (1–10 μM) inhibited the appearance in the mitochondrial of labelled cytochrome c synthesized in vitro because the unlabelled protein dilutes the labelled one and because the translocation system has a limited capacity [apparent V is 1–3 pmol × min−1× (mg mitochondrial protein)−1]. Concentrations of added apocytochrome c exceeding the concentrations of precursor proteins synthesized in vitro by a factor of about 104 did not inhibit the transfer of ADP/ATP carrier or ATPase subunit 9 into mitochondria. Carbonylcyanide m-chlorophenylhydrazone, an uncoupler of oxidative phosphorylation, inhibited transfer in vitro of ADP/ATP carrier and of ATPase subunit 9, but not of cytochrome c. These findings suggest that cytochrome c and the other two proteins have different import pathways into mitochondria. It can be inferred from the data presented that different 'receptors' on the mitochondrial surface mediate the specific recognition of precursor proteins by mitochondria as a first step in the transport process

    Particle Swarm Optimization with Reinforcement Learning for the Prediction of CpG Islands in the Human Genome

    Get PDF
    BACKGROUND: Regions with abundant GC nucleotides, a high CpG number, and a length greater than 200 bp in a genome are often referred to as CpG islands. These islands are usually located in the 5' end of genes. Recently, several algorithms for the prediction of CpG islands have been proposed. METHODOLOGY/PRINCIPAL FINDINGS: We propose here a new method called CPSORL to predict CpG islands, which consists of a complement particle swarm optimization algorithm combined with reinforcement learning to predict CpG islands more reliably. Several CpG island prediction tools equipped with the sliding window technique have been developed previously. However, the quality of the results seems to rely too much on the choices that are made for the window sizes, and thus these methods leave room for improvement. CONCLUSIONS/SIGNIFICANCE: Experimental results indicate that CPSORL provides results of a higher sensitivity and a higher correlation coefficient in all selected experimental contigs than the other methods it was compared to (CpGIS, CpGcluster, CpGProd and CpGPlot). A higher number of CpG islands were identified in chromosomes 21 and 22 of the human genome than with the other methods from the literature. CPSORL also achieved the highest coverage rate (3.4%). CPSORL is an application for identifying promoter and TSS regions associated with CpG islands in entire human genomic. When compared to CpGcluster, the islands predicted by CPSORL covered a larger region in the TSS (12.2%) and promoter (26.1%) region. If Alu sequences are considered, the islands predicted by CPSORL (Alu) covered a larger TSS (40.5%) and promoter (67.8%) region than CpGIS. Furthermore, CPSORL was used to verify that the average methylation density was 5.33% for CpG islands in the entire human genome

    Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome

    Get PDF
    Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC: r=0.997, P=2.3×10−4; IMR90: r=0.934, P=2×10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes
    corecore