13,983 research outputs found

    Effect of volcanic debris on stratospheric ion conductivity

    Get PDF
    The reduction is reported of stratospheric ion conductivities in the altitude range of 20 to 27 km attributable to the aerosols injected into the stratosphere by the eruption of volcano Nevado Del Ruiz on November 13, 1985. Three balloon experiments were conducted from Hyderabad, India (17.5 N, 78.6 E) carrying a Langmuir probe payload for measuring stratospheric ion conductivities. The first flight took place about 9 months before the volcanic eruption, the second 3 weeks after the eruption and the third about a year later. Lidar observations from Japan, Hawaii and Europe reported detection of aerosol layers in the 18 to 25 km altitude range attributable to the Nevado Del Ruiz volcanic eruption. A comparison of the conductivity profiles shows that the reduction of ion conductivities is: 57.3 percent at 20 km and 31 percent at 25 km. A year after the eruption, conductivities at all heights tended to recover

    Private Outsourcing of Polynomial Evaluation and Matrix Multiplication using Multilinear Maps

    Full text link
    {\em Verifiable computation} (VC) allows a computationally weak client to outsource the evaluation of a function on many inputs to a powerful but untrusted server. The client invests a large amount of off-line computation and gives an encoding of its function to the server. The server returns both an evaluation of the function on the client's input and a proof such that the client can verify the evaluation using substantially less effort than doing the evaluation on its own. We consider how to privately outsource computations using {\em privacy preserving} VC schemes whose executions reveal no information on the client's input or function to the server. We construct VC schemes with {\em input privacy} for univariate polynomial evaluation and matrix multiplication and then extend them such that the {\em function privacy} is also achieved. Our tool is the recently developed {mutilinear maps}. The proposed VC schemes can be used in outsourcing {private information retrieval (PIR)}.Comment: 23 pages, A preliminary version appears in the 12th International Conference on Cryptology and Network Security (CANS 2013

    Top Yukawa coupling measurement with indefinite CP Higgs in e+ettˉΦe^+e^-\to t\bar{t}\Phi

    Full text link
    We consider the issue of the top quark Yukawa coupling measurement in a model in dependent and general case with the inclusion of CP-violation in the coupling. Arguably the best process to study this coupling is the associa ted production of Higgs boson along with a ttˉt\bar t pair in a machine like the International Linear Collider (ILC). While detailed analyses of the sensitivity of the measurement assuming a Standard Model (SM) - like coupling are available in the context of ILC, conclude that th e coupling could be pinned down at about 10\% level with modest luminosity, our investigations show that the scenario could be different in case of a more general coupling. The modified Lorentz structure resulting in a changed functional dependence of the cross section on the couplin g, along with the difference in the cross section itself leads to considerable deviation in the sensitivity. Our studies with an ILC of center of mass energies of 500 GeV, 800 GeV and 1000 GeV show that moderate CP-mixing in the Higgs sector could change the sensitivity to about 20\ %, while it could be worsened to 75\% in cases which could accommodate more dramatic changes in the coupling. While detailed considerations of the decay distributions point to a need for a relook at the analysis strategy followed for the case of SM such as for a model independent analysis of the top quark Yukawa coupling measurement. This study strongly suggests that, a joint analysis of the CP properties and the Yukawa coupling measurement would be the way forward at the ILC and that caution must be excercised in the measurem ent of the Yukawa couplings and the conclusions drawn from it.Comment: 18 pages, 7 figures, uses revte

    Chiral exchange drag and chirality oscillations in synthetic antiferromagnets

    Get PDF
    Long-range interactions between quasiparticles give rise to a ‘drag’ that affects the fundamental properties of many systems in condensed matter physics1,2,3,4,5,6,7,8,9,10,11. Drag typically involves the exchange of linear momentum between quasiparticles and strongly influences their transport properties. Here, we describe a kind of drag that involves the exchange of angular momentum between two current-driven magnetic domain walls. The motions of the domain walls are correlated and determined by the strength of the drag. When the drag is below a threshold value, the domain walls move together at a constant intermediate velocity with a steady leakage of angular momentum from the faster to the slower wall. However, we find that when the drag exceeds a threshold value, a different dynamic can take place in which the faster domain wall’s magnetization oscillates synchronously with a precessional motion of the slower domain wall’s magnetization, and angular momentum is continuously transferred between them. Our findings demonstrate a method for delivering spin angular momentum remotely to magnetic entities that otherwise could not be manipulated directly by current, for example, by coupling domain walls or other non-collinear spin textures in metallic and insulating media

    Thermodynamic Functions of Para-Halogenated Benzaldehydes

    Get PDF

    Spin Tunneling in Magnetic Molecules: Quasisingular Perturbations and Discontinuous SU(2) Instantons

    Full text link
    Spin coherent state path integrals with discontinuous semiclassical paths are investigated with special reference to a realistic model for the magnetic degrees of freedom in the Fe8 molecular solid. It is shown that such paths are essential to a proper understanding of the phenomenon of quenched spin tunneling in these molecules. In the Fe8 problem, such paths are shown to arise as soon as a fourth order anisotropy term in the energy is turned on, making this term a singular perturbation from the semiclassical point of view. The instanton approximation is shown to quantitatively explain the magnetic field dependence of the tunnel splitting, as well as agree with general rules for the number of quenching points allowed for a given value of spin. An accurate approximate formula for the spacing between quenching points is derived
    corecore