9,145 research outputs found

    Hydrodynamic Limit for an Hamiltonian System with Boundary Conditions and Conservative Noise

    Full text link
    We study the hyperbolic scaling limit for a chain of N coupled anharmonic oscillators. The chain is attached to a point on the left and there is a force (tension) Ď„\tau acting on the right. In order to provide good ergodic properties to the system, we perturb the Hamiltonian dynamics with random local exchanges of velocities between the particles, so that momentum and energy are locally conserved. We prove that in the macroscopic limit the distributions of the elongation, momentum and energy, converge to the solution of the Euler system of equations, in the smooth regime.Comment: New deeply revised version. 1 figure adde

    Space telescope observatory management system preliminary test and verification plan

    Get PDF
    The preliminary plan for the Space Telescope Observatory Management System Test and Verification (TAV) is provided. Methodology, test scenarios, test plans and procedure formats, schedules, and the TAV organization are included. Supporting information is provided

    The Kondo effect in bosonic spin liquids

    Full text link
    In a metal, a magnetic impurity is fully screened by the conduction electrons at low temperature. In contrast, impurity moments coupled to spin-1 bulk bosons, such as triplet excitations in paramagnets, are only partially screened, even at the bulk quantum critical point. We argue that this difference is not due to the quantum statistics of the host particles but instead related to the structure of the impurity-host coupling, by demonstrating that frustrated magnets with bosonic spinon excitations can display a bosonic version of the Kondo effect. However, the Bose statistics of the bulk implies distinct behavior, such as a weak-coupling impurity quantum phase transition, and perfect screening for a range of impurity spin values. We discuss implications of our results for the compound Cs2CuCl4, as well as possible extensions to multicomponent bosonic gases.Comment: 4 pages, 3 figures. The weak coupling RG flow was corrected and expanded in last versio

    Upper-critical dimension in a quantum impurity model: Critical theory of the asymmetric pseudogap Kondo problem

    Full text link
    Impurity moments coupled to fermions with a pseudogap density of states display a quantum phase transition between a screened and a free moment phase upon variation of the Kondo coupling. We describe the universal theory of this transition for the experimentally relevant case of particle-hole asymmetry. The theory takes the form of a crossing between effective singlet and doublet levels, interacting with low-energy fermions. Depending on the pseudogap exponent, this interaction is either relevant or irrelevant under renormalization group transformations, establishing the existence of an upper-critical "dimension" in this impurity problem. Using perturbative renormalization group techniques we compute various critical properties and compare with numerical results.Comment: 4 pages, 2 figs, (v2) title changed, log corrections for r=1 adde

    Impulsivity in rodents with a genetic predisposition for excessive alcohol consumption is associated with a lack of a prospective strategy

    Get PDF
    Increasing evidence supports the hypothesis that impulsive decision-making is a heritable risk factor for an alcohol use disorder (AUD). Clearly identifying a link between impulsivity and AUD risk, however, is complicated by the fact that both AUDs and impulsivity are heterogeneous constructs. Understanding the link between the two requires identifying the underlying cognitive factors that lead to impulsive choices. Rodent models have established that a family history of excessive drinking can lead to the expression of a transgenerational impulsive phenotype, suggesting heritable alterations in the decision-making process. In the present study, we explored the cognitive processes underlying impulsive choice in a validated, selectively bred rodent model of excessive drinking-the alcohol-preferring ("P") rat. Impulsivity was measured via delay discounting (DD), and P rats exhibited an impulsive phenotype as compared to their outbred foundation strain-Wistar rats. Steeper discounting in P rats was associated with a lack of a prospective behavioral strategy, which was observed in Wistar rats and was directly related to DD. To further explore the underlying cognitive factors mediating these observations, a drift diffusion model of DD was constructed. These simulations supported the hypothesis that prospective memory of the delayed reward guided choice decisions, slowed discounting, and optimized the fit of the model to the experimental data. Collectively, these data suggest that a deficit in forming or maintaining a prospective behavioral plan is a critical intermediary to delaying reward, and by extension, may underlie the inability to delay reward in those with increased AUD risk

    Hydrodynamic limit for the velocity flip model

    Full text link
    We study the diffusive scaling limit for a chain of NN coupled oscillators. In order to provide the system with good ergodic properties, we perturb the Hamiltonian dynamics with random flips of velocities, so that the energy is locally conserved. We derive the hydrodynamic equations by estimating the relative entropy with respect to the local equilibrium state modified by a correction term

    Bibliography of reversed-phase partition chromatography

    Get PDF
    BIBLIOGRAPHY OF REVERSED-PHASE PARTITION CHROMATOGRAPH

    Transport Properties of a Chain of Anharmonic Oscillators with random flip of velocities

    Get PDF
    We consider the stationary states of a chain of nn anharmonic coupled oscillators, whose deterministic hamiltonian dynamics is perturbed by random independent sign change of the velocities (a random mechanism that conserve energy). The extremities are coupled to thermostats at different temperature TℓT_\ell and TrT_r and subject to constant forces τℓ\tau_\ell and τr\tau_r. If the forces differ τℓ≠τr\tau_\ell \neq \tau_r the center of mass of the system will move of a speed VsV_s inducing a tension gradient inside the system. Our aim is to see the influence of the tension gradient on the thermal conductivity. We investigate the entropy production properties of the stationary states, and we prove the existence of the Onsager matrix defined by Green-kubo formulas (linear response). We also prove some explicit bounds on the thermal conductivity, depending on the temperature.Comment: Published version: J Stat Phys (2011) 145:1224-1255 DOI 10.1007/s10955-011-0385-
    • …
    corecore