1,434 research outputs found
Risk Analyses and Risk Management - Slope Instabilities in Alpine Environments
Two prominent deep-seated gravitational slope deformations in the Eastern Alps (Tyrol, Austria) have been activated in the last seven years and pose serious threats to the densely populated valleys. Based on multidisciplinary field investigations, different hazard scenarios of slope failures have been evaluated for risk management processes. These event scenarios, which are characterised by strongly varying volumes of the failing slide masses as well as by different probabilities of occurrence, and varying disintegration factors control different accumulation and damage scenarios. Finally, these evaluations and risk analyses aimed to define “design events”, i.e. which scenarios are relevant for the dimensioning of mitigation measures. The main aim is to sustainably enable further land use, in comparison to the overall geohazard risks that are also present at several other sites in Tyrol (Austria)
De Novo Genome Sequence of "Candidatus Liberibacter solanacearum" from a Single Potato Psyllid in California.
The draft genome sequence of "Candidatus Liberibacter solanacearum" strain RSTM from a potato psyllid (Bactericera cockerelli) in California is reported here. The RSTM strain has a genome size of 1,286,787Â bp, a G+C content of 35.1%, 1,211 predicted open reading frames (ORFs), and 43 RNA genes
Saturation of Magnetorotational Instability through Magnetic Field Generation
The saturation mechanism of Magneto-Rotational Instability (MRI) is examined
through analytical quasilinear theory and through nonlinear computation of a
single mode in a rotating disk. We find that large-scale magnetic field is
generated through the alpha effect (the correlated product of velocity and
magnetic field fluctuations) and causes the MRI mode to saturate. If the
large-scale plasma flow is allowed to evolve, the mode can also saturate
through its flow relaxation. In astrophysical plasmas, for which the flow
cannot relax because of gravitational constraints, the mode saturates through
field generation only.Comment: 9 pages, 10 figures to appear in ApJ, Jun 2009, 10 v69
Single cell mechanics: stress stiffening and kinematic hardening
Cell mechanical properties are fundamental to the organism but remain poorly
understood. We report a comprehensive phenomenological framework for the
nonlinear rheology of single fibroblast cells: a superposition of elastic
stiffening and viscoplastic kinematic hardening. Our results show, that in
spite of cell complexity its mechanical properties can be cast into simple,
well-defined rules, which provide mechanical cell strength and robustness via
control of crosslink slippage.Comment: 4 pages, 6 figure
Prevention of neonatal oxygen-induced brain damage by reduction of intrinsic apoptosis
International audienceWithin the last decade, it became clear that oxygen contributes to the pathogenesis of neonatal brain damage, leading to neurocognitive impairment of prematurely born infants in later life. Recently, we have identified a critical role for receptor-mediated neuronal apoptosis in the immature rodent brain. However, the contribution of the intrinsic apoptotic pathway accompanied by activation of caspase-2 under hyperoxic conditions in the neonatal brain still remains elusive. Inhibition of caspases appears a promising strategy for neuroprotection. In order to assess the influence of specific caspases on the developing brain, we applied a recently developed pentapeptide-based group II caspase inhibitor (5-(2,6-difluorophenoxy)-3(R,S)-(2(S)-(2(S)-(3-methoxycarbonyl-2(S)-(3-m ethyl-2(S)-((quinoline-2-carbonyl)-amino)-butyrylamino)propionylamino) 3-methylbutyrylamino) propionylamino)-4-oxo-pentanoic acid methyl ester; TRP601). Here, we report that elevated oxygen (hyperoxia) triggers a marked increase in active caspase-2 expression, resulting in an initiation of the intrinsic apoptotic pathway with upregulation of key proteins, namely, cytochrome c, apoptosis protease-activating factor-1, and the caspase-independent protein apoptosis-inducing factor, whereas BH3-interacting domain death agonist and the anti-apoptotic protein B-cell lymphoma-2 are downregulated. These results coincide with an upregulation of caspase-3 activity and marked neurodegeneration. However, single treatment with TRP601 at the beginning of hyperoxia reversed the detrimental effects in this model. Hyperoxia-mediated neurodegeneration is supported by intrinsic apoptosis, suggesting that the development of highly selective caspase inhibitors will represent a potential useful therapeutic strategy in prematurely born infants. Cell Death and Disease (2012) 3, e250; doi:10.1038/cddis.2011.133; published online 12 January 201
Formation of Liesegang patterns: A spinodal decomposition scenario
Spinodal decomposition in the presence of a moving particle source is
proposed as a mechanism for the formation of Liesegang bands. This mechanism
yields a sequence of band positions x_n that obeys the spacing law
x_n~Q(1+p)^n. The dependence of the parameters p and Q on the initial
concentration of the reagents is determined and we find that the functional
form of p is in agreement with the experimentally observed Matalon-Packter law.Comment: RevTex, 4 pages, 4 eps figure
Quasi-single helicity spectra in the Madison Symmetric Torus
Evidence of a self-organized collapse towards a narrow spectrum of magnetic instabilities in the Madison Symmetric Torus [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 (1991)] reversed field pinch device is presented. In this collapsed state, dubbed quasi-single helicity (QSH), the spectrum of magnetic modes condenses spontaneously to one dominant mode more completely than ever before observed. The amplitudes of all but the largest of the m=1 modes decrease in QSH states. New results about thermal features of QSH spectra and the identification of global control parameters for their onset are also discussed
Liesegang patterns: Effect of dissociation of the invading electrolyte
The effect of dissociation of the invading electrolyte on the formation of
Liesegang bands is investigated. We find, using organic compounds with known
dissociation constants, that the spacing coefficient, 1+p, that characterizes
the position of the n-th band as x_n ~ (1+p)^n, decreases with increasing
dissociation constant, K_d. Theoretical arguments are developed to explain
these experimental findings and to calculate explicitly the K_d dependence of
1+p.Comment: RevTex, 8 pages, 3 eps figure
Momentum transport from current-driven reconnection in astrophysical disks
Current-driven reconnection is investigated as a possible mechanism for
angular momentum transport in astrophysical disks. A theoretical and
computational study of angular momentum transport from current-driven
magnetohydrodynamic instabilities is performed. It is found that both a single
resistive tearing instability and an ideal instability can transport momentum
in the presence of azimuthal Keplerian flow. The structure of the Maxwell
stress is examined for a single mode through analytic quasilinear theory and
computation. Full nonlinear multiple mode computation shows that a global
Maxwell stress causes significant momentum transport.Comment: 14 figures; Accepted for publication in Ap
- …