11,733 research outputs found

    A plea for a modal realist epistemology

    Get PDF
    David Lewis’s genuine modal realism postulates the existence of concrete possible worlds that are spatio-temporally discontinuous with the concrete world we inhabit. How, then, can we have modal knowledge? How can we know that there are possible worlds and how can we know the characters of those worlds

    Quantum black holes in Type-IIA String Theory

    Full text link
    We study black hole solutions of Type-IIA Calabi-Yau compactifications in the presence of perturbative quantum corrections. We define a class of black holes that only exist in the presence of quantum corrections and that, consequently, can be considered as purely quantum black holes. The regularity conditions of the solutions impose the topological constraint h^{1,1}>h^{2,1} on the Calabi-Yau manifold, defining a class of admissible compactifications, which we prove to be non-empty for h^{1,1}=3 by explicitly constructing the corresponding Calabi-Yau manifolds, new in the literature.Comment: 17 pages. References added. Explanation of the truncation improve

    On the energy and baseline optimization to study effects related to the δ-phase (CP-/T-violation) in neutrino oscillations at a neutrino factory

    Get PDF
    In this paper we discuss the detection of CP- and T-violation effects in the framework of a neutrino factory. We introduce three quantities, which are good discriminants for a non-vanishing complex phase (δ) in the 3 × 3 neutrino mixing matrix: Δδ, ΔCP and ΔT. We find that these three discriminants (in vacuum) all scale with L/Ev, where L is the baseline and Ev the neutrino energy. Matter effects modify the scaling, but these effects are large enough to spoil the sensitivity only for baselines larger than 5000 km. So, in the hypothesis of constant neutrino factory power (i.e., number of muons inversely proportional to muon energy), the sensitivity on the δ-phase is independent of the baseline chosen. Specially interesting is the direct measurement of T-violation from the "wrong-sign" electron channel (i.e., the ΔT discriminant), which involves a comparison of the ve → vμ and vμ → ve oscillation rates. However, the vμ → ve measurement requires magnetic discrimination of the electron charge, experimentally very challenging in a neutrino detector. Since the direction of the electron curvature has to be estimated before the start of the electromagnetic shower, low-energy neutrino beams and hence short baselines, are preferred. In this paper we show, as an example, the exclusion regions in the Δm212-δ plane using the ΔCP and ΔT discriminants for two concrete cases keeping the same L/Ev ratio (730 km/7.5 GeV and 2900 km/30 GeV). We obtain a similar excluded region provided that the electron detection efficiency is ∼20% and the charge confusion 0.1%. The Δm212 compatible with the LMA solar data can be tested with a flux of 5 × 1021 muons. We compare these results with the fit of the visible energy distributions. © 2002 Elsevier Science B.V. All rights reserved

    A dual-mode generalized likelihood ratio approach to self-reorganizing digital flight control system design

    Get PDF
    The research is reported on the problems of failure detection and reliable system design for digital aircraft control systems. Failure modes, cross detection probability, wrong time detection, application of performance tools, and the GLR computer package are discussed
    corecore