388 research outputs found

    Antitumor Activity of Gold(I), Silver(I) and Copper(I) Complexes Containing Chiral Tertiary Phosphines

    Get PDF
    The in vitro cytotoxicities of a number of gold(I), silver(I) and copper(I) complexes containing chiral tertiary phosphine ligands have been examined against the mouse tumour cell lines P815 mastocytoma, B16 melanoma [gold(I) and silver(I) compounds] and P388 leukaemia [gold(I) complexes only] with many of the complexes having IC50 values comparable to that of the reference compounds cis-diamminedichloroplatinum(ll), cisplatin, and bis[1,2-bis(diphenylphosphino) ethane]gold(I) iodide. The chiral tertiary phosphine ligands used in this study include (R)-(2-aminophenyl)methylphenylphosphine; (R,R)-, (S,S)- and (R*,R*)-1,2-phenylenebis(methylphenylphosphine); and (R,R)-, (S,S)- and (R*,R*)-bis{(2-diphenylphosphinoethyl)phenylphosphino}ethane. The in vitro cytotoxicities of gold(I) and silver(I) complexes containing the optically active forms of the tetra(tertiary phosphine) have also been examined against the human ovarian carcinoma cell lines 41M and CH1, and the cisplatin resistant 41McisR, CH1cisR and SKOV-3 tumour models. IC50 values in the range 0.01 - 0.04 ÎŒM were determined for the most active compounds, silver(I) complexes of the tetra(tertiary phosphine). Furthermore, the chirality of the ligand appeared to have little effect on the overall activity of the complexes: similar IC50 data were obtained for complexes of a particular metal ion with each of the stereoisomeric forms of a specific ligand

    Imaging biomarkers of lung ventilation in interstitial lung disease from <sup>129</sup>Xe and oxygen enhanced <sup>1</sup>H MRI

    Get PDF
    Purpose: To compare imaging biomarkers from hyperpolarised 129Xe ventilation MRI and dynamic oxygen-enhanced MRI (OE-MRI) with standard pulmonary function tests (PFT) in interstitial lung disease (ILD) patients. To evaluate if biomarkers can separate ILD subtypes and detect early signs of disease resolution or progression. Study type: Prospective longitudinal. Population: Forty-one ILD (fourteen idiopathic pulmonary fibrosis (IPF), eleven hypersensitivity pneumonitis (HP), eleven drug-induced ILD (DI-ILD), five connective tissue disease related-ILD (CTD-ILD)) patients and ten healthy volunteers imaged at visit 1. Thirty-four ILD patients completed visit 2 (eleven IPF, eight HP, ten DIILD, five CTD-ILD) after 6 or 26 weeks. Field strength/sequence: MRI was performed at 1.5 T, including inversion recovery T1 mapping, dynamic MRI acquisition with varying oxygen levels, and hyperpolarised 129Xe ventilation MRI. Subjects underwent standard spirometry and gas transfer testing. Assessment: Five 1H MRI and two 129Xe MRI ventilation metrics were compared with spirometry and gas transfer measurements. Statistical test: To evaluate differences at visit 1 among subgroups: ANOVA or Kruskal-Wallis rank tests with correction for multiple comparisons. To assess the relationships between imaging biomarkers, PFT, age and gender, at visit 1 and for the change between visit 1 and 2: Pearson correlations and multilinear regression models. Results: The global PFT tests could not distinguish ILD subtypes. Percentage ventilated volumes were lower in ILD patients than in HVs when measured with 129Xe MRI (HV 97.4 ± 2.6, CTD-ILD: 91.0 ± 4.8 p = 0.017, DI-ILD 90.1 ± 7.4 p = 0.003, HP 92.6 ± 4.0 p = 0.013, IPF 88.1 ± 6.5 p < 0.001), but not with OE-MRI. 129Xe reported more heterogeneous ventilation in DI-ILD and IPF than in HV, and OE-MRI reported more heterogeneous ventilation in DI-ILD and IPF than in HP or CTD-ILD. The longitudinal changes reported by the imaging biomarkers did not correlate with the PFT changes between visits. Data conclusion: Neither 129Xe ventilation nor OE-MRI biomarkers investigated in this study were able to differentiate between ILD subtypes, suggesting that ventilation-only biomarkers are not indicated for this task. Limited but progressive loss of ventilated volume as measured by 129Xe-MRI may be present as the biomarker of focal disease progresses. OE-MRI biomarkers are feasible in ILD patients and do not correlate strongly with PFT. Both OE-MRI and 129Xe MRI revealed more spatially heterogeneous ventilation in DI-ILD and IPF

    Participant characteristics and exclusion from trials: a meta-analysis of individual participant-level data from phase 3/4 industry-funded trials in chronic medical conditions

    Get PDF
    Objectives Trials often do not represent their target populations, threatening external validity. The aim was to assess whether age, sex, comorbidity count and/or race/ethnicity are associated with likelihood of screen failure (i.e., failure to be enrolled in the trial for any reason) among potential trial participants.Design Bayesian meta-analysis of individual participant-level data (IPD).SettingIndustry-funded phase 3/4 trials in chronic medical conditions. Participants were identified as “enrolled” or “screen failure” using trial IPD.Participants Data were available for 52 trials involving 72,178 screened individuals of whom 24,733 (34%) failed screening.Main outcome measures For each trial, logistic regression models were constructed to assess likelihood of screen failure in people who had been invited to screening, regressed on age (per 10-year increment), sex (male versus female), comorbidity count (per one additional comorbidity) and race/ethnicity. Trial-level analyses were combined in Bayesian hierarchical models with pooling across condition.ResultsIn age- and sex-adjusted models across all trials, neither age nor sex was associated with increased odds of screen failure, though weak associations were detected after additionally adjusting for comorbidity (age, per 10-year increment: odds ratio [OR] 1.02; 95% credibility interval [CI] 1.01 to 1.04 and male sex: OR 0.95; 95% CI 0.91 to 1.00). Comorbidity count was weakly associated with screen failure, but in an unexpected direction (OR 0.97 per additional comorbidity, 95% CI 0.94 to 1.00, adjusted for age and sex). Those who self-reported as Black were slightly more likely to fail screening (OR 1.04; 95% CI 0.99 to 1.09); an effect which persisted after adjustment for age, sex and comorbidity count (OR 1.05; 95% CI 0.98 to 1.12). The between-trial heterogeneity was generally low, but there was evidence of heterogeneity by sex across conditions (variation in odds ratios on log-scale of 0.01-0.13).Conclusions Though the conclusions are limited by uncertainty about the completeness or accuracy of data collection among non-randomised participants, we identified mostly weak associations between age, sex, comorbidity count and Black race/ethnicity and increased likelihood of screen failure. Proportionate increases in screening these underserved populations may improve representation in trials. Trial registration Relevant trials in chronic medical conditions were identified according to pre-specified criteria (PROSPERO CRD42018048202) then analysed according to availability of IPD. <br/

    Assessing trial representativeness using Serious Adverse Events : An observational analysis using aggregate and individual-level data from clinical trials and routine healthcare data

    Get PDF
    Background: The applicability of randomised controlled trials of pharmacological agents to older people with frailty/multimorbidity is often uncertain, due to concerns that trials are not representative. However, assessing trial representativeness is challenging and complex. We explore an approach assessing trial representativeness by comparing rates of trial serious adverse events (SAE) to rates of hospitalisation/death in routine care. Methods: This was an observational analysis of individual (125 trials, n=122,069) and aggregate-level drug trial data (483 trials, n=636,267) for 21 index conditions compared to population-based routine healthcare data (routine care). Trials were identified from ClinicalTrials.gov. Routine care comparison from linked primary care and hospital data from Wales, UK (n=2.3M). Our outcome of interest was SAEs (routinely reported in trials). In routine care, SAEs were based on hospitalisations and deaths (which are SAEs by definition). We compared trial SAEs in trials to expected SAEs based on age/sex standardised routine care populations with the same index condition. Using IPD, we assessed the relationship between multimorbidity count and SAEs in both trials and routine care and assessed the impact on the observed/expected SAE ratio additionally accounting for multimorbidity. Results: For 12/21 index conditions, the pooled observed/expected SAE ratio was &lt;1, indicating fewer SAEs in trial participants than in routine care. A further 6/21 had point estimates &lt;1 but the 95% CI included the null. The median pooled estimate of observed/expected SAE ratio was 0.60 (95% CI 0.55–0.64; COPD) and the interquartile range was 0.44 (0.34–0.55; Parkinson’s disease) to 0.87 (0.58–1.29; inflammatory bowel disease). Higher multimorbidity count was associated with SAEs across all index conditions in both routine care and trials. For most trials, the observed/expected SAE ratio moved closer to 1 after additionally accounting for multimorbidity count, but it nonetheless remained below 1 for most. Conclusions: Trial participants experience fewer SAEs than expected based on age/sex/condition hospitalisation and death rates in routine care, confirming the predicted lack of representativeness. This difference is only partially explained by differences in multimorbidity. Assessing observed/expected SAE may help assess the applicability of trial findings to older populations in whom multimorbidity and frailty are common

    Correlations between comorbidities in trials and the community: an individual-level participant data meta-analysis

    Get PDF
    Background: People with comorbidities are under-represented in randomised controlled trials, and it is unknown whether patterns of comorbidity are similar in trials and the community. Methods: Individual-level participant data were obtained for 83 clinical trials (54,688 participants) for 16 index conditions from two trial repositories: Yale University Open Data Access (YODA) and the Centre for Global Clinical Research Data (Vivli). Community data (860,177 individuals) were extracted from the Secure Anonymised Information Linkage (SAIL) databank for the same index conditions. Comorbidities were defined using concomitant medications. For each index condition, we estimated correlations between comorbidities separately in trials and community data. For the six commonest comorbidities we estimated all pairwise correlations using Bayesian multivariate probit models, conditioning on age and sex. Correlation estimates from trials with the same index condition were combined into a single estimate. We then compared the trial and community estimates for each index condition. Results: Despite a higher prevalence of comorbidities in the community than in trials, the correlations between comorbidities were mostly similar in both settings. On comparing correlations between the community and trials, 21% of correlations were stronger in the community, 10% were stronger in the trials and 68% were similar in both. In the community, 5% of correlations were negative, 21% were null, 56% were weakly positive and 18% were strongly positive. Equivalent results for the trials were 11%, 33%, 45% and 10% respectively. Conclusions: Comorbidity correlations are generally similar in both the trials and community, providing some evidence for the reporting of comorbidity-specific findings from clinical trials

    Assessing trial representativeness using Serious Adverse Events: An observational analysis using aggregate and individual-level data from clinical trials and routine healthcare data

    Get PDF
    Background: The applicability of randomised controlled trials of pharmacological agents to older people with frailty/multimorbidity is often uncertain, due to concerns that trials are not representative. However, assessing trial representativeness is challenging and complex. We explore an approach assessing trial representativeness by comparing rates of trial serious adverse events (SAE) to rates of hospitalisation/death in routine care. Methods: This was an observational analysis of individual (125 trials, n=122,069) and aggregate-level drug trial data (483 trials, n=636,267) for 21 index conditions compared to population-based routine healthcare data (routine care). Trials were identified from ClinicalTrials.gov. Routine care comparison from linked primary care and hospital data from Wales, UK (n=2.3M). Our outcome of interest was SAEs (routinely reported in trials). In routine care, SAEs were based on hospitalisations and deaths (which are SAEs by definition). We compared trial SAEs in trials to expected SAEs based on age/sex standardised routine care populations with the same index condition. Using IPD, we assessed the relationship between multimorbidity count and SAEs in both trials and routine care and assessed the impact on the observed/expected SAE ratio additionally accounting for multimorbidity. Results: For 12/21 index conditions, the pooled observed/expected SAE ratio was &lt;1, indicating fewer SAEs in trial participants than in routine care. A further 6/21 had point estimates &lt;1 but the 95% CI included the null. The median pooled estimate of observed/expected SAE ratio was 0.60 (95% CI 0.55–0.64; COPD) and the interquartile range was 0.44 (0.34–0.55; Parkinson’s disease) to 0.87 (0.58–1.29; inflammatory bowel disease). Higher multimorbidity count was associated with SAEs across all index conditions in both routine care and trials. For most trials, the observed/expected SAE ratio moved closer to 1 after additionally accounting for multimorbidity count, but it nonetheless remained below 1 for most. Conclusions: Trial participants experience fewer SAEs than expected based on age/sex/condition hospitalisation and death rates in routine care, confirming the predicted lack of representativeness. This difference is only partially explained by differences in multimorbidity. Assessing observed/expected SAE may help assess the applicability of trial findings to older populations in whom multimorbidity and frailty are common

    Patients' Experience of therapeutic footwear whilst living at risk of neuropathic diabetic foot ulceration: an interpretative phenomenological analysis (IPA).

    Get PDF
    BACKGROUND: Previous work has found that people with diabetes do not wear their therapeutic footwear as directed, but the thinking behind this behaviour is unclear. Adherence to therapeutic footwear advice must improve in order to reduce foot ulceration and amputation risk in people with diabetes and neuropathy. Therefore this study aimed to explore the psychological influences and personal experiences behind the daily footwear selection of individuals with diabetes and neuropathy. METHODS: An interpretative phenomenological analysis (IPA) approach was used to explore the understanding and experience of therapeutic footwear use in people living at risk of diabetic neuropathic foot ulceration. This study benefited from the purposive selection of a small sample of four people and used in-depth semi structured interviews because it facilitated the deep and detailed examination of personal thoughts and feelings behind footwear selection. FINDINGS: Four overlapping themes that interact to regulate footwear choice emerged from the analyses: a) Self-perception dilemma; resolving the balance of risk experienced by people with diabetes and neuropathy day to day, between choosing to wear footwear to look and feel normal and choosing footwear to protect their feet from foot ulceration; b) Reflective adaption; The modification and individualisation of a set of values about footwear usage created in the minds of people with diabetes and neuropathy; c) Adherence response; The realignment of footwear choice with personal values, to reinforce the decision not to change behaviour or bring about increased footwear adherence, with or without appearance management; d) Reality appraisal; A here and now appraisal of the personal benefit of footwear choice on emotional and physical wellbeing, with additional consideration to the preservation of therapeutic footwear. CONCLUSION: For some people living at risk of diabetic neuropathic foot ulceration, the decision whether or not to wear therapeutic footwear is driven by the individual 'here and now', risks and benefits, of footwear choice on emotional and physical well-being for a given social context

    Representation of people with comorbidity and multimorbidity in clinical trials of novel drug therapies:an individual-level participant data analysis

    Get PDF
    Background: Clinicians are less likely to prescribe guideline-recommended treatments to people with multimorbidity than to people with a single condition. Doubts as to the applicability of clinical trials of drug treatments (the gold standard for evidence-based medicine) when people have co-existing diseases (comorbidity) may underlie this apparent reluctance. Therefore, for a range of index conditions, we measured the comorbidity among participants in clinical trials of novel drug therapies and compared this to the comorbidity among patients in the community. Methods: Data from industry-sponsored phase 3/4 multicentre trials of novel drug therapies for chronic medical conditions were identified from two repositories: Clinical Study Data Request and the Yale University Open Data Access project. We identified 116 trials (n = 122,969 participants) for 22 index conditions. Community patients were identified from a nationally representative sample of 2.3 million patients in Wales, UK. Twenty-one comorbidities were identified from medication use based on pre-specified definitions. We assessed the prevalence of each comorbidity and the total number of comorbidities (level of multimorbidity), for each trial and in community patients. Results: In the trials, the commonest comorbidities in order of declining prevalence were chronic pain, cardiovascular disease, arthritis, affective disorders, acid-related disorders, asthma/COPD and diabetes. These conditions were also common in community-based patients. Mean comorbidity count for trial participants was approximately half that seen in community-based patients. Nonetheless, a substantial proportion of trial participants had a high degree of multimorbidity. For example, in asthma and psoriasis trials, 10–15% of participants had ≄ 3 conditions overall, while in osteoporosis and chronic obstructive pulmonary disease trials 40–60% of participants had ≄ 3 conditions overall. Conclusions: Comorbidity and multimorbidity are less common in trials than in community populations with the same index condition. Comorbidity and multimorbidity are, nevertheless, common in trials. This suggests that standard, industry-funded clinical trials are an underused resource for investigating treatment effects in people with comorbidity and multimorbidity

    Participant characteristics and exclusion from trials: a meta-analysis of individual participant-level data from phase 3/4 industry-funded trials in chronic medical conditions

    Get PDF
    Objectives: To assess whether age, sex, comorbidity count, and race and ethnic group are associated with the likelihood of trial participants not being enrolled in a trial for any reason (ie, screen failure). Design: Bayesian meta-analysis of individual participant level data. Setting: Industry funded phase 3/4 trials of chronic medical conditions. Participants: Participants were identified using individual participant level data to be in either the enrolled group or screen failure group. Data were available for 52 trials involving 72 178 screened individuals of whom 24 733 (34%) were excluded from the trial at the screening stage. Main outcome measures: For each trial, logistic regression models were constructed to assess likelihood of screen failure in people who had been invited to screening, and were regressed on age (per 10 year increment), sex (male v female), comorbidity count (per one additional comorbidity), and race or ethnic group. Trial level analyses were combined in Bayesian hierarchical models with pooling across condition. Results: In age and sex adjusted models across all trials, neither age nor sex was associated with increased odds of screen failure, although weak associations were detected after additionally adjusting for comorbidity (odds ratio of age, per 10 year increment was 1.02 (95% credibility interval 1.01 to 1.04) and male sex (0.95 (0.91 to 1.00)). Comorbidity count was weakly associated with screen failure, but in an unexpected direction (0.97 per additional comorbidity (0.94 to 1.00), adjusted for age and sex). People who self-reported as black seemed to be slightly more likely to fail screening than people reporting as white (1.04 (0.99 to 1.09)); a weak effect that seemed to persist after adjustment for age, sex, and comorbidity count (1.05 (0.98 to 1.12)). The between-trial heterogeneity was generally low, evidence of heterogeneity by sex was noted across conditions (variation in odds ratios on log scale of 0.01-0.13). Conclusions: Although the conclusions are limited by uncertainty about the completeness or accuracy of data collection among participants who were not randomised, we identified mostly weak associations with an increased likelihood of screen failure for age, sex, comorbidity count, and black race or ethnic group. Proportionate increases in screening these underserved populations may improve representation in trials. Trial registration number: PROSPERO CRD42018048202

    Participant characteristics and exclusion from trials: a meta-analysis of individual participant-level data from phase 3/4 industry-funded trials in chronic medical conditions

    Get PDF
    Objectives: To assess whether age, sex, comorbidity count, and race and ethnic group are associated with the likelihood of trial participants not being enrolled in a trial for any reason (ie, screen failure). Design: Bayesian meta-analysis of individual participant level data. Setting: Industry funded phase 3/4 trials of chronic medical conditions. Participants: Participants were identified using individual participant level data to be in either the enrolled group or screen failure group. Data were available for 52 trials involving 72 178 screened individuals of whom 24 733 (34%) were excluded from the trial at the screening stage. Main outcome measures: For each trial, logistic regression models were constructed to assess likelihood of screen failure in people who had been invited to screening, and were regressed on age (per 10 year increment), sex (male v female), comorbidity count (per one additional comorbidity), and race or ethnic group. Trial level analyses were combined in Bayesian hierarchical models with pooling across condition. Results: In age and sex adjusted models across all trials, neither age nor sex was associated with increased odds of screen failure, although weak associations were detected after additionally adjusting for comorbidity (odds ratio of age, per 10 year increment was 1.02 (95% credibility interval 1.01 to 1.04) and male sex (0.95 (0.91 to 1.00)). Comorbidity count was weakly associated with screen failure, but in an unexpected direction (0.97 per additional comorbidity (0.94 to 1.00), adjusted for age and sex). People who self-reported as black seemed to be slightly more likely to fail screening than people reporting as white (1.04 (0.99 to 1.09)); a weak effect that seemed to persist after adjustment for age, sex, and comorbidity count (1.05 (0.98 to 1.12)). The between-trial heterogeneity was generally low, evidence of heterogeneity by sex was noted across conditions (variation in odds ratios on log scale of 0.01-0.13). Conclusions: Although the conclusions are limited by uncertainty about the completeness or accuracy of data collection among participants who were not randomised, we identified mostly weak associations with an increased likelihood of screen failure for age, sex, comorbidity count, and black race or ethnic group. Proportionate increases in screening these underserved populations may improve representation in trials. Trial registration number: PROSPERO CRD42018048202
    • 

    corecore