98 research outputs found

    Laser-driven ion acceleration with a hollow beam at PHELIX

    Get PDF

    Upgrade of GSI's laser-driven ion beamline at Z6

    Get PDF

    A laser-driven proton beamline at GSI

    Get PDF

    Operation and Improvements of PHELIX

    Get PDF

    Optimization of plasma mirror reflectivity and optical quality using double laser pulses

    Get PDF
    We measure a record 962.5 % specularly reflected energy fraction from an interaction with a plasma mirror surface preionised by a controlled prepulse and find that the optical quality is dependent on the inter pulse time delay. Simulations show that the main pulse reflected energy is a strong function of plasma density scale length, which increases with the time delay and reaches a peak reflectivity for a scale length of 0.3 m, which is achieved here for a pulse separation time of 3 ps. It is found that the incident laser quasi near field intensity distribution leads to nonuniformities in this plasma expansion and consequent critical surface position distribution. The plasma mirror optical quality is found to be governed by the resultant perturbations in the critical surface position, which become larger with inter pulse time delay

    Quantitative phase contrast imaging of a shock-wave with a laser-plasma based X-ray source

    Get PDF
    X-ray phase contrast imaging (XPCI) is more sensitive to density variations than X-ray absorption radiography, which is a crucial advantage when imaging weakly-absorbing, low-Z materials, or steep density gradients in matter under extreme conditions. Here, we describe the application of a polychromatic X-ray laser-plasma source (duration ~0.5 ps, photon energy >1 keV) to the study of a laser-driven shock travelling in plastic material. The XPCI technique allows for a clear identification of the shock front as well as of small-scale features present during the interaction. Quantitative analysis of the compressed object is achieved using a density map reconstructed from the experimental data

    Guided electromagnetic discharge pulses driven by short intense laser pulses:Characterization and modeling

    Get PDF
    Strong electromagnetic pulses (EMPs) are generated from intense laser interactions with solid-density targets and can be guided by the target geometry, specifically through conductive connections to the ground. We present an experimental characterization by time- and spatial-resolved proton deflectometry of guided electromagnetic discharge pulses along wires including a coil, driven by 0.5 ps, 50 J, 1019 W/cm2 laser pulses. Proton-deflectometry allows us to time-resolve first the EMP due to the laser-driven target charging and then the return EMP from the ground through the conductive target stalk. Both EMPs have a typical duration of tens of ps and correspond to currents in the kA-range with electric-field amplitudes of multiple GV/m. The sub-mm coil in the target rod creates lensing effects on probing protons due to both magnetic- and electric-field contributions. This way, protons of the 10 MeV-energy range are focused over cm-scale distances. Experimental results are supported by analytical modeling and high-resolution numerical particle-in-cell simulations, unraveling the likely presence of a surface plasma, in which parameters define the discharge pulse dispersion in the non-linear propagation regime.</p
    corecore