220 research outputs found

    Ferromagnetism or slow paramagnetic relaxation in Fe-doped Li3_3N?

    Get PDF
    We report on isothermal magnetization, M\"ossbauer spectroscopy, and magnetostriction as well as temperature-dependent alternating-current (ac) susceptibility, specific heat, and thermal expansion of single crystalline and polycrstalline Li2_2(Li1−x_{1-x}Fex_x)N with x=0x = 0 and x≈0.30x \approx 0.30. Magnetic hysteresis emerges at temperatures below T≈50 T \approx 50\,K with coercivity fields of up to ÎŒ0H=11.6 \mu_0H = 11.6\,T at T=2 T = 2\,K and magnetic anisotropy energies of 310 310\,K (27 27\,meV). The ac susceptibility is strongly frequency dependent (f = 10f\,=\,10--10,000 10,000\,Hz) and reveals an effective energy barrier for spin reversal of ΔE≈1100 \Delta E \approx 1100\,K. The relaxation times follow Arrhenius behavior for T>25 T > 25\,K. For T<10 T < 10\,K, however, the relaxation times of τ≈1010 \tau \approx 10^{10}\,s are only weakly temperature-dependent indicating the relevance of a quantum tunneling process instead of thermal excitations. The magnetic entropy amounts to more than 25 25\,J molFe−1 ^{-1}_{\rm Fe}\,K−1^{-1} which significantly exceeds RRln2, the value expected for the entropy of a ground state doublet. Thermal expansion and magnetostriction indicate a weak magneto-elastic coupling in accordance with slow relaxation of the magnetization. The classification of Li2_2(Li1−x_{1-x}Fex_x)N as ferromagnet is stressed and contrasted with highly anisotropic and slowly relaxing paramagnetic behavior.Comment: 12 pages, 10 figure

    Magnetic interactions and spin dynamics in the bond-disordered pyrochlore fluoride NaCaCo2_2F7_7

    Full text link
    We report high-frequency/high-field electron spin resonance (ESR) and high-field magnetization studies on single crystals of the bond-disordered pyrochlore NaCaCo2_2F7_7. Frequency- and temperature-dependent ESR investigations above the freezing temperature Tf∌2.4T_f \sim 2.4 K reveal the coexistence of two distinct magnetic phases. A cooperative paramagnetic phase, evidenced by a gapless excitation mode, is found as well as a spin-glass phase developing below 20 K which is associated with a gapped low-energy excitation. Effective gg-factors close to 2 are obtained for both modes in line with pulsed high-field magnetization measurements which show an unsaturated isotropic behavior up to 58 T at 2 K. In order to describe the field-dependent magnetization in high magnetic fields, we propose an empirical model accounting for highly anisotropic ionic gg-tensors expected for this material and taking into account the strongly competing interactions between the spins which lead to a frustrated ground state. As a detailed quantitative relation between effective gg-factors as determined from ESR and the local gg-tensors obtained by neutron scattering [Ross et al., Phys. Rev. B 93, 014433 (2016)] is still sought after, our work motivates further theoretical investigations of the low-energy excitations in bond-disordered pyrochlores.Comment: 9 pages, 6 figure

    Direct measurement of the proton magnetic moment

    Get PDF

    The X-ray Telescope of CAST

    Get PDF
    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.Comment: 19 pages, 25 figures and images, replaced by the revised version accepted for publication in New Journal of Physic

    First Light Measurements of Capella with the Low Energy Transmission Grating Spectrometer aboard the Chandra X-ray Observatory

    Get PDF
    We present the first X-ray spectrum obtained by the Low Energy Transmission Grating Spectrometer (LETGS) aboard the Chandra X-ray Observatory. The spectrum is of Capella and covers a wavelength range of 5-175 A (2.5-0.07 keV). The measured wavelength resolution, which is in good agreement with ground calibration, is Δλ≃\Delta \lambda \simeq 0.06 A (FWHM). Although in-flight calibration of the LETGS is in progress, the high spectral resolution and unique wavelength coverage of the LETGS are well demonstrated by the results from Capella, a coronal source rich in spectral emission lines. While the primary purpose of this letter is to demonstrate the spectroscopic potential of the LETGS, we also briefly present some preliminary astrophysical results. We discuss plasma parameters derived from line ratios in narrow spectral bands, such as the electron density diagnostics of the He-like triplets of carbon, nitrogen, and oxygen, as well as resonance scattering of the strong Fe XVII line at 15.014 A.Comment: 4 pages (ApJ letter LaTeX), 2 PostScript figures, accepted for publication in ApJ Letters, 200

    The microscopic spin-phonon coupling constants in CuGeO_3

    Full text link
    Using RPA results, mean field theory, and refined data for the polarization vectors we determine the coupling constants of the four Peierls-active phonon modes to the spin chains of CuGeO_3. We then derive the values of the coupling of the spin system to the linear ionic displacements, the bond lengths and the angles between bonds. Our values are consistent with microscopic theories and various experimental results. We discuss the applicability of static approaches to the spin-phonon coupling. The c-axis anomaly of the thermal expansion is explained. We give the values of the coupling constants in an effective one-dimensional Hamiltonian.Comment: 11 pages, two figures, 13 tables, PRB 59 (in press

    Results and perspectives of the solar axion search with the CAST experiment

    Full text link
    The status of the solar axion search with the CERN Axion Solar Telescope (CAST) will be presented. Recent results obtained by the use of 3^3He as a buffer gas has allowed us to extend our sensitivity to higher axion masses than our previous measurements with 4^4He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≀ma≀ \le m_{a} \le 0.64 eV. From the absence of an excess of x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ≀2.3×10−10_{a\gamma} \le 2.3\times 10^{-10} GeV−1^{-1} at 95% C.L., the exact value depending on the pressure setting. CAST published results represent the best experimental limit on the photon couplings to axions and other similar exotic particles dubbed WISPs (Weakly Interacting Slim Particles) in the considered mass range and for the first time the limit enters the region favored by QCD axion models. Preliminary sensitivities for axion masses up to 1.16 eV will also be shown reaching mean upper limits on the axion-photon coupling of gaγ≀3.5×10−10_{a\gamma} \le 3.5\times 10^{-10} GeV−1^{-1} at 95% C.L. Expected sensibilities for the extension of the CAST program up to 2014 will be presented. Moreover long term options for a new helioscope experiment will be evoked.Comment: 4 pages, 2 pages, to appear in the proceedings of the 24th Rencontres de Blois V2 A few affiliations were not corrected in previous version V3 Author adde

    Prospects for the CERN Axion Solar Telescope Sensitivity to 14.4 keV Axions

    Get PDF
    The CERN Axion Solar Telescope (CAST) is searching for solar axions using the 9.0 T strong and 9.26 m long transverse magnetic field of a twin aperture LHC test magnet, where axions could be converted into X-rays via reverse Primakoff process. Here we explore the potential of CAST to search for 14.4 keV axions that could be emitted from the Sun in M1 nuclear transition between the first, thermally excited state, and the ground state of 57Fe nuclide. Calculations of the expected signals, with respect to the axion-photon coupling, axion-nucleon coupling and axion mass, are presented in comparison with the experimental sensitivity.Comment: 4 pages, 1 figure. Submitted to Nucl. Instr. and Meth.
    • 

    corecore