1,340 research outputs found
Resonant d-wave scattering in harmonic waveguides
We observe and analyze d-wave resonant scattering of bosons in tightly
confining harmonic waveguides. It is shown that the d-wave resonance emerges in
the quasi-1D regime as an imprint of a 3D d-wave shape resonance. A scaling
relation for the position of the d-wave resonance is provided. By changing the
trap frequency, ultracold scattering can be continuously tuned from s-wave to
d-wave resonant behavior. The effect can be utilized for the realization of
ultracold atomic gases interacting via higher partial waves and opens a novel
possibility for studying strongly correlated atomic systems beyond s-wave
physics.Comment: 6 pages, 9 figure
Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants
We present two new adaptive quadrature routines. Both routines differ from
previously published algorithms in many aspects, most significantly in how they
represent the integrand, how they treat non-numerical values of the integrand,
how they deal with improper divergent integrals and how they estimate the
integration error. The main focus of these improvements is to increase the
reliability of the algorithms without significantly impacting their efficiency.
Both algorithms are implemented in Matlab and tested using both the "families"
suggested by Lyness and Kaganove and the battery test used by Gander and
Gautschi and Kahaner. They are shown to be more reliable, albeit in some cases
less efficient, than other commonly-used adaptive integrators.Comment: 32 pages, submitted to ACM Transactions on Mathematical Softwar
Wave Mechanics of a Two Wire Atomic Beamsplitter
We consider the problem of an atomic beam propagating quantum mechanically
through an atom beam splitter. Casting the problem in an adiabatic
representation (in the spirit of the Born-Oppenheimer approximation in
molecular physics) sheds light on explicit effects due to non-adiabatic passage
of the atoms through the splitter region. We are thus able to probe the fully
three dimensional structure of the beam splitter, gathering quantitative
information about mode-mixing, splitting ratios,and reflection and transmission
probabilities
An estimate for the average spectral measure of random band matrices
For a class of random band matrices of band width , we prove regularity of
the average spectral measure at scales , and find its
asymptotics at these scales.Comment: 19 pp., revised versio
Coordinate Space HFB Calculations for the Zirconium Isotope Chain up to the Two-Neutron Dripline
We solve the Hartree-Fock-Bogoliubov (HFB) equations for deformed, axially
symmetric even-even nuclei in coordinate space on a 2-D lattice utilizing the
Basis-Spline expansion method. Results are presented for the neutron-rich
zirconium isotopes up to the two-neutron dripline. In particular, we calculate
binding energies, two-neutron separation energies, normal densities and pairing
densities, mean square radii, quadrupole moments, and pairing gaps. Very large
prolate quadrupole deformations (beta2=0.42,0.43,0.47) are found for the
(102,104,112)Zr isotopes, in agreement with recent experimental data. We
compare 2-D Basis-Spline lattice results with the results from a 2-D HFB code
which uses a transformed harmonic oscillator basis.Comment: 9 pages, 9 figure
Recommended from our members
B-spline neural networks based PID controller for Hammerstein systems
A new PID tuning and controller approach is introduced for Hammerstein systems based on input/output data. A B-spline neural network is used to model the nonlinear static function in the Hammerstein system. The control signal is composed of a PID controller together with a correction term. In order to update the control signal, the multi-step ahead predictions of the Hammerstein system based on the B-spline neural networks and the associated Jacobians matrix are calculated using the De Boor algorithms including both the functional and derivative recursions. A numerical example is utilized to demonstrate the efficacy of the proposed approaches
A combined R-matrix eigenstate basis set and finite-differences propagation method for the time-dependent Schr\"{od}dinger equation: the one-electron case
In this work we present the theoretical framework for the solution of the
time-dependent Schr\"{o}dinger equation (TDSE) of atomic and molecular systems
under strong electromagnetic fields with the configuration space of the
electron's coordinates separated over two regions, that is regions and
. In region the solution of the TDSE is obtained by an R-matrix basis
set representation of the time-dependent wavefunction. In region a grid
representation of the wavefunction is considered and propagation in space and
time is obtained through the finite-differences method. It appears this is the
first time a combination of basis set and grid methods has been put forward for
tackling multi-region time-dependent problems. In both regions, a high-order
explicit scheme is employed for the time propagation. While, in a purely
hydrogenic system no approximation is involved due to this separation, in
multi-electron systems the validity and the usefulness of the present method
relies on the basic assumption of R-matrix theory, namely that beyond a certain
distance (encompassing region ) a single ejected electron is distinguishable
from the other electrons of the multi-electron system and evolves there (region
II) effectively as a one-electron system. The method is developed in detail for
single active electron systems and applied to the exemplar case of the hydrogen
atom in an intense laser field.Comment: 13 pages, 6 figures, submitte
Lattice QCD study of a five-quark hadronic molecule
We compute the ground-state energies of a heavy-light K-Lambda like system as
a function of the relative distance r of the hadrons. The heavy quarks, one in
each hadron, are treated as static. Then, the energies give rise to an
adiabatic potential Va(r) which we use to study the structure of the five-quark
system. The simulation is based on an anisotropic and asymmetric lattice with
Wilson fermions. Energies are extracted from spectral density functions
obtained with the maximum entropy method. Our results are meant to give
qualitative insight: Using the resulting adiabatic potential in a Schroedinger
equation produces bound state wave functions which indicate that the ground
state of the five-quark system resembles a hadronic molecule, whereas the first
excited state, having a very small rms radius, is probably better described as
a five-quark cluster, or a pentaquark. We hypothesize that an all light-quark
pentaquark may not exist, but in the heavy-quark sector it might, albeit only
as an excited state.Comment: 11 pages, 15 figures, 4 table
The Asymptotics of Wilkinson's Iteration: Loss of Cubic Convergence
One of the most widely used methods for eigenvalue computation is the
iteration with Wilkinson's shift: here the shift is the eigenvalue of the
bottom principal minor closest to the corner entry. It has been a
long-standing conjecture that the rate of convergence of the algorithm is
cubic. In contrast, we show that there exist matrices for which the rate of
convergence is strictly quadratic. More precisely, let be the matrix having only two nonzero entries and let
be the set of real, symmetric tridiagonal matrices with the same spectrum
as . There exists a neighborhood of which is
invariant under Wilkinson's shift strategy with the following properties. For
, the sequence of iterates exhibits either strictly
quadratic or strictly cubic convergence to zero of the entry . In
fact, quadratic convergence occurs exactly when . Let be
the union of such quadratically convergent sequences : the set has
Hausdorff dimension 1 and is a union of disjoint arcs meeting at
, where ranges over a Cantor set.Comment: 20 pages, 8 figures. Some passages rewritten for clarit
- …