29 research outputs found
Quasiparticle band structure of the almost-gapless transition-metal-based Heusler semiconductors
Transition-metal-based Heusler semiconductors are promising materials for a
variety of applications ranging from spintronics to thermoelectricity.
Employing the approximation within the framework of the FLAPW method, we
study the quasi-particle band structure of a number of such compounds being
almost gapless semiconductors. We find that in contrast to the
\textit{sp}-electron based semiconductors such as Si and GaAs, in these systems
the many-body corrections have a minimal effect on the electronic band
structure and the energy band gap increases by less than 0.2~eV, which makes
the starting point density functional theory (DFT) a good approximation for the
description of electronic and optical properties of these materials.
Furthermore, the band gap can be tuned either by the variation of the lattice
parameter or by the substitution of the \emph{sp}-chemical element
NiS - An unusual self-doped, nearly compensated antiferromagnetic metal
NiS, exhibiting a text-book example of a first-order transition with many
unusual properties at low temperatures, has been variously described in terms
of conflicting descriptions of its ground state during the past several
decades. We calculate these physical properties within first-principle
approaches based on the density functional theory and conclusively establish
that all experimental data can be understood in terms of a rather unusual
ground state of NiS that is best described as a self-doped, nearly compensated,
antiferromagnetic metal, resolving the age-old controversy. We trace the origin
of this novel ground state to the specific details of the crystal structure,
band dispersions and a sizable Coulomb interaction strength that is still
sub-critical to drive the system in to an insulating state. We also show how
the specific antiferromagnetic structure is a consequence of the less-discussed
90 degree and less than 90 degree superexchange interactions built in to such
crystal structures
First-principles calculations of exchange interactions, spin waves, and temperature dependence of magnetization in inverse-Heusler-based spin gapless semiconductors
Employing first principles electronic structure calculations in conjunction
with the frozen-magnon method we calculate exchange interactions, spin-wave
dispersion, and spin-wave stiffness constants in inverse-Heusler-based spin
gapless semiconductor (SGS) compounds MnCoAl, TiMnAl, CrZnSi,
TiCoSi and TiVAs. We find that their magnetic behavior is similar to
the half-metallic ferromagnetic full-Heusler alloys, i.e., the intersublattice
exchange interactions play an essential role in the formation of the magnetic
ground state and in determining the Curie temperature, . All
compounds, except TiCoSi possess a ferrimagnetic ground state. Due to the
finite energy gap in one spin channel, the exchange interactions decay sharply
with the distance, and hence magnetism of these SGSs can be described
considering only nearest and next-nearest neighbor exchange interactions. The
calculated spin-wave dispersion curves are typical for ferrimagnets and
ferromagnets. The spin-wave stiffness constants turn out to be larger than
those of the elementary 3-ferromagnets. Calculated exchange parameters are
used as input to determine the temperature dependence of the magnetization and
of the SGSs. We find that the of all compounds is
much above the room temperature. The calculated magnetization curve for
MnCoAl as well as the Curie temperature are in very good agreement with
available experimental data. The present study is expected to pave the way for
a deeper understanding of the magnetic properties of the inverse-Heusler-based
SGSs and enhance the interest in these materials for application in spintronic
and magnetoelectronic devices.Comment: Accepted for publ;ication in Physical Review
Topological Crystalline Insulator and Quantum Anomalous Hall States in IV-VI based Monolayers and their Quantum Wells
Different from the two-dimensional (2D) topological insulator, the 2D
topological crystalline insulator (TCI) phase disappears when the mirror
symmetry is broken, e.g., upon placing on a substrate. Here, based on a new
family of 2D TCIs - SnTe and PbTe monolayers - we theoretically predict the
realization of the quantum anomalous Hall effect with Chern number C = 2 even
when the mirror symmetry is broken. Remarkably, we also demonstrate that the
considered materials retain their large-gap topological properties in quantum
well structures obtained by sandwiching the monolayers between NaCl layers. Our
results demonstrate that the TCIs can serve as a seed for observing robust
topologically non-trivial phases.Comment: 5 pages, submitted on 27th Feb 201
Correlation effects and orbital magnetism of Co clusters
Recent experiments on isolated Co clusters have shown huge orbital magnetic
moments in comparison with their bulk and surface counterparts. These clusters
hence provide the unique possibility to study the evolution of the orbital
magnetic moment with respect to the cluster size and how competing interactions
contribute to the quenching of orbital magnetism. We investigate here different
theoretical methods to calculate the spin and orbital moments of Co clusters,
and assess the performances of the methods in comparison with experiments. It
is shown that density functional theory in conventional local density or
generalized gradient approximations, or even with a hybrid functional, severely
underestimates the orbital moment. As natural extensions/corrections we
considered the orbital polarization correction, the LDA+U approximation as well
as the LDA+DMFT method. Our theory shows that of the considered methods, only
the LDA+DMFT method provides orbital moments in agreement with experiment, thus
emphasizing the importance of dynamic correlations effects for determining
fundamental magnetic properties of magnets in the nano-size regime