253 research outputs found

    A study on climatological features of the Asian summer monsoon: dynamics, energetics and variability

    Get PDF
    A continuing goal in the diagnostic studies of the atmospheric general circulation is to estimate various quantities that cannot be directly observed. Evaluation of all the dynamical terms in the budget equations for kinetic energy, vorticity, heat and moisture provide estimates of kinetic energy and vorticity generation, diabatic heating and source/sinks of moisture. All these are important forcing factors to the climate system. In this paper, diagnostic aspects of the dynamics and energetics of the Asian summer monsoon and its spatial variability in terms of contrasting features of surplus and deficient summer monsoon seasons over India are studied with reanalysis data sets. The daily reanalysis data sets from the National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) are used for a fifty-two year (1948-1999) period to investigate the large-scale budget of kinetic energy, vorticity, heat and moisture. The primary objectives of the study are to comprehend the climate diagnostics of the Asian summer monsoon and the role of equatorial convection of the summer monsoon activity over India.It is observed that the entrance/exit regions of the Tropical Easterly Jet (TEJ) are characterized by the production/destruction of the kinetic energy, which is essential to maintain outflow/inflow prevailing at the respective location of the TEJ. Both zonal and meridional components contribute to the production of kinetic energy over the monsoon domain, though the significant contribution to the adiabatic generation of kinetic energy originates from the meridional component over the Bay of Bengal in the upper level and over the Somali Coast in the low level. The results indicate that the entire Indian peninsula including the Bay of Bengal is quite unstable during the summer monsoon associated with the production of vorticity within the domain itself and maintain the circulation. The summer monsoon evinces strong convergence of heat and moisture over the monsoon domain. Also, considerable heat energy is generated through the action of the adiabatic process. The combined effect of these processes leads to the formation of a strong diabatic heat source in the region to maintain the monsoon circulation. The interesting aspect noted in this study is that the large-scale budgets of heat and moisture indicate excess magnitudes over the Arabian Sea and the western equatorial Indian Ocean during surplus monsoon. On the other hand, the east equatorial Indian Ocean and the Bay of Bengal region show stronger activity during deficient monsoon. This is reflected in various budget terms considered in this study

    Interannual variability of onset of the summer monsoon over India and its prediction

    Get PDF
    In this article, the interannual variability of certain dynamic and thermodynamic characteristics of various sectors in the Asian summer monsoon domain was examined during the onset phase over the south Indian peninsula (Kerala Coast). Daily average (0000 and 1200 UTC) reanalysis data sets of the National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) for the period 1948-1999 were used. Based on 52 years onset date of the Indian summer monsoon, we categorized the pre-onset, onset, and post-onset periods (each an average of 5 days) to investigate the interannual variability of significant budget terms over the Arabian Sea, Bay of Bengal, and the Indian peninsula. A higher difference was noticed in low-level kinetic energy (850 hPa) and the vertically integrated generation of kinetic energy over the Arabian Sea from the pre-onset, onset, and post-onset periods. Also, significant changes were noticed in the net tropospheric moisture and diabatic heating over the Arabian Sea and Indian peninsula from the pre-onset to the post-onset period. It appears that attaining the magnitude of 40 m2 s-2 and then a sharp rise in kinetic energy at 850 hPa is an appropriate time to declare the onset of the summer monsoon over India. In addition to a sufficient level of net tropospheric moisture (40 mm), a minimum strength of low-level flow is needed to trigger convective activity over the Arabian Sea and the Bay of Bengal. An attempt was also made to develop a location-specific prediction of onset dates of the summer monsoon over India based on energetics and basic meteorological parameters using multivariate statistical techniques. The regression technique was developed with the data of May and June for 42 years (1948-1989) and validated with 10 years NCEP reanalysis from 1990 to 1999. It was found that the predicted onset dates from the regression model are fairly in agreement with the observed onset dates obtained from the Indian Meteorology Department

    Onset characteristics of the southwest monsoon over India

    Get PDF
    Dynamic and thermodynamic characteristics of the Asian summer monsoon during the onset phase over the Indian Peninsula (Kerala coast) and its variability are examined with reanalysis data sets. For this study, daily averaged (0000 and 1200 UTC) reanalysis data sets of National Centre for Environmental Prediction-National Centre for Atmospheric Research for the period 1948-99 are used. Based on 52 years of onset dates of the Indian summer monsoon, we categorized pre-onset, onset and post-onset periods (each averaged 5 days) to investigate the mean circulation characteristics and the large-scale energetics of the Asian summer monsoon. It is found that the strength of the low-level Somali jet and upper tropospheric tropical easterly jet increase rapidly during the time of evolution of the summer monsoon over India. Over the Bay of Bengal and the Arabian Sea, predominant changes are noticed in the large-scale balances of kinetic energy, heat and moisture from the pre-onset to the post-onset periods. Prior to the onset of the summer monsoon over India, a zone of flux convergence of heat and moisture is noticed over the eastern sector of the Bay of Bengal and this intensifies in the onset and post-onset periods. During onset of the monsoon over India, the horizontal flux convergence of heat and moisture, as well as diabatic heating, are enhanced over the Arabian Sea. These subsequently increase with the evolution and advancement of the monsoon over India. Further, the dynamics of the evolution processes (15 days before and 30 days after the onset date of the monsoon over Kerala for each annual cycle) are studied over various sectors, such as the Arabian Sea, Bay of Bengal and Indian Peninsula region. The study reveals that the low-level kinetic energy, vertically integrated generation of kinetic energy and net tropospheric moisture over Arabian Sea can be used as potential predictors for the prediction of the possible onset date of the summer monsoon over the Indian Peninsula

    HPV vaccination of immunocompromised hosts.

    Get PDF
    It is well-established that immunocompromised people are at increased risk of HPV-related disease compared with those who are immunocompetent. Prophylactic HPV sub-unit vaccines are safe and immunogenic in immunocompromised people and it is strongly recommended that vaccination occur according to national guidelines. When delivered to immunocompromised populations, HPV vaccines should be given as a 3-dose regimen

    The contrasting features of Asian summer monsoon during surplus and deficient rainfall over India

    Get PDF
    An endeavour is made to distinguish the mean summer monsoon features during surplus and deficient monsoon seasons. Based on all-India summer monsoon rainfall, over 42 years (1958-99), seven surplus and ten deficient monsoon seasons are identified. Making use of daily averaged (00 Z and 12 Z) reanalysis data sets from the National Center for Environmental Prediction-National Center for Atmospheric Research for the corresponding surplus and deficient monsoon seasons, the mean circulation characteristics and large-scale energetics are examined. The circulation features denote that the cross equatorial flow, low-level jet and tropical easterly jet are stronger during a surplus monsoon. Further, strong Tibetan anticyclonic flow characterizes a surplus monsoon. The large-scale balances of kinetic energy, heat and moisture show a significantly large quantity of diabatic heating, adiabatic generation of kinetic energy, and horizontal convergence of heat and moisture during the surplus monsoon season compared with the deficient state. The regions with statistically significant difference between surplus and deficient monsoon seasons are delineated by a Student's t-test at the 95% confidence level. The remarkable aspect noticed in this study is that the Arabian Sea branch of the monsoon circulation is more vigorous during a surplus monsoon season, whereas the eastern Bay of Bengal branch is stronger during a deficient monsoon. The various large-scale budget terms of kinetic energy, heat and moisture are found to be consistent and in agreement with the seasonal monsoon activity over India

    A study on dynamic and thermodynamic aspects of breaks in the summer monsoon over India

    Get PDF
    The rainfall associated with the Indian summer monsoon shows large intraseasonal and interannual variability. Break-monsoon conditions are one of the important epochs of the monsoon, and they contribute significantly to the intraseasonal variability of the monsoon. The National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis data sets are used to investigate the significant energy budget terms during the pre-break (5 days prior to the commencement of the break), break and post-break (5 days after the cessation of the break) periods. In the present study, certain dynamic and thermodynamic characteristics of the monsoon circulation during break-monsoon conditions are investigated. The important terms in the various energy budget equations are analysed between the surface and 100 hPa for the break and its departures from pre- and post-break for the period 1968-96. The statistical significance of these departures is also examined by Student's t-test at the 95% confidence level. The volume integral of the budget terms is also examined in four sectors, i.e. the Arabian Sea, Bay of Bengal, northern India and central India. Significant changes in the wind field and vorticity at 850 hPa take place in the monsoon trough zone, coastal regions of the western coast of India and the southwestern Bay of Bengal off the southern Indian coast. The vertically upward rising arm of the Hadley cell weakens during the break phase. The strong flux convergence of kinetic energy in the central Arabian Sea and flux divergence in the northeastern Bay of Bengal weakens during pre- and post-break periods. Significant changes in the diabatic heating horizontal flux of heat and moisture are observed in the monsoon trough zone, central and northwestern Bay of Bengal. The Bay of Bengal and central India sectors show higher magnitudes and changes in respect of dynamic and thermodynamic parameters compared with the Arabian Sea and northern India

    Potential of INSAT-3D sounder-derived total precipitable water product for weather forecast

    Get PDF
    The objectives of the INSAT-3D satellite are to enhance the meteorological observations and to monitor the Earth's surface for weather forecasting and disaster warning. One of the weather-monitoring capabilities of the INSAT-3D sounder is the estimation of water vapour in the atmosphere. The amount of water vapour present in the atmospheric column is derived as the total precipitable water (TPW) product from the infrared radiances measured by the INSAT-3D sounder. The present study is based on TPW derived from INSAT-3D sounder, radiosonde (RS) observations and the corresponding National Oceanic and Atmospheric Administration (NOAA) satellite. To assess retrieval performances of INSAT-3D sounder-derived TPW, RS TPW observations are considered for the validation from May to September 2016 from 34 stations belonging to the India Meteorological Department (IMD). The analysis is performed on daily, monthly, and subdivisional bases over the Indian region. The comparison of INSAT-3D TPW with RS TPW on daily and monthly bases shows that the root mean square error (RMSE) and correlation coefficients (CC) are  ∼ 8&thinsp;mm and 0.8, respectively. However, on subdivisional and overall scales, the RMSE found to be in the range of 1 to 2&thinsp;mm and CC was around 0.9 in comparison with RS and NOAA. The spatial distribution of INSAT-3D TPW with actual rainfall observation is also investigated. In general, INSAT-3D TPW corresponds well with rainfall observation; however, it has found that heavy rainfall events occur in the presence of high TPW values. In addition, the cases of thunderstorm events were assessed using TPW from INSAT-3D and network of Global Navigation Satellite System (GNSS) receiver. This shows the good agreement between TPW from INSAT-3D and GNSS during the mesoscale activity. The improvement in the estimation of TPW is carried out by applying the GSICS calibration corrections (Global Space-based Inter-Calibration System) to the radiances from infrared (IR) channels of the sounder, which is used by IMDPS (INSAT Meteorological Data Processing System). The current TPW from INSAT-3D satellite can be utilized operationally for weather monitoring and forecast purposes. It can also offer substantial opportunities for improvement in nowcasting studies.</p

    Asia Oceania Guidelines for the Implementation of Programs for Cervical Cancer Prevention and Control

    Get PDF
    This paper aims to provide evidence-based recommendations for health professionals, to develop a comprehensive cervical cancer program for a clinic, a community, or a country. Ensuring access to healthcare is the responsibility of all societies, and the Asia Oceania Research Organisation in Genital Infections and Neoplasia (AOGIN) is committed to working collaboratively with governments and health professionals to facilitate prevention programs, to protect girls and women from cervical cancer, a disease that globally affects 500,000 and kills nearly 300,000 women annually, just over half of whom are in the Asia Oceania region. We share the vision that a comprehensive program of vaccination, screening, and treatment should be made accessible to all girls and women in the world. The primary purpose of these guidelines is to provide information on scientific evidence on the different modalities and approaches of cervical cancer prevention programs, for high resource and low resource settings. The secondary purpose is to provide an overview of the current situation of cervical cancer control and prevention in various Asian Oceania countries: their views of an ideal program, identified obstacles, and suggestions to overcome them are discussed
    corecore