449 research outputs found

    Addressing Reported Pro-Apoptotic Functions of NF-κB: Targeted Inhibition of Canonical NF-κB Enhances the Apoptotic Effects of Doxorubicin

    Get PDF
    The ability of the transcription factor NF-κB to upregulate anti-apoptotic proteins has been linked to the chemoresistance of solid tumors to standard chemotherapy. In contrast, recent studies have proposed that, in response to doxorubicin, NF-κB can be pro-apoptotic through repression of anti-apoptotic target genes. However, there is little evidence analyzing the outcome of NF-κB inhibition on the cytotoxicity of doxorubicin in studies describing pro-apoptotic NF-κB activity. In this study, we further characterize the activation of NF-κB in response to doxorubicin and evaluate its role in chemotherapy-induced cell death in sarcoma cells where NF-κB is reported to be pro-apoptotic. Doxorubicin treatment in U2OS cells induced canonical NF-κB activity as evidenced by increased nuclear accumulation of phosphorylated p65 at serine 536 and increased DNA–binding activity. Co-treatment with a small molecule IKKβ inhibitor, Compound A, abrogated this response. RT–PCR evaluation of anti-apoptotic gene expression revealed that doxorubicin-induced transcription of cIAP2 was inhibited by Compound A, while doxorubicin-induced repression of other anti-apoptotic genes was unaffected by Compound A or siRNA to p65. Furthermore, the combination of doxorubicin and canonical NF-κB inhibition with Compound A or siRNA to p65 resulted in decreased cell viability measured by trypan blue staining and MTS assay and increased apoptosis measured by cleaved poly (ADP-ribose) polymerase and cleaved caspase 3 when compared to doxorubicin alone. Our results demonstrate that doxorubicin-induced canonical NF-κB activity associated with phosphorylated p65 is anti-apoptotic in its function and that doxorubicin-induced repression of anti-apoptotic genes occurs independent of p65. Therefore, combination therapies incorporating NF-κB inhibitors together with standard chemotherapies remains a viable method to improve the clinical outcomes in patients with advanced stage malignancies

    Beam profile investigation of the new collimator system for the J-PET detector

    Get PDF
    Jagiellonian Positron Emission Tomograph (J-PET) is a multi-purpose detector which will be used for search for discrete symmetries violations in the decays of positronium atoms and for investigations with positronium atoms in life-sciences and medical diagnostics. In this article we present three methods for determination of the beam profile of collimated annihilation gamma quanta. Precise monitoring of this profile is essential for time and energy calibration of the J-PET detector and for the determination of the library of model signals used in the hit-time and hit-position reconstruction. We have we have shown that usage of two lead bricks with dimensions of 5x10x20 cm^3 enables to form a beam of annihilation quanta with Gaussian profile characterized by 1 mm FWHM. Determination of this characteristic is essential for designing and construction the collimator system for the 24-module J-PET prototype. Simulations of the beam profile for different collimator dimensions were performed. This allowed us to choose optimal collimation system in terms of the beam profile parameters, dimensions and weight of the collimator taking into account the design of the 24 module J-PET detector.Comment: 14 pages, 9 figure

    Compressive Sensing of Signals Generated in Plastic Scintillators in a Novel J-PET Instrument

    Full text link
    The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The dis- cussed detector offers improvement of the Time of Flight (TOF) resolution due to the use of fast plastic scintillators and dedicated electronics allowing for sam- pling in the voltage domain of signals with durations of few nanoseconds. In this paper we show that recovery of the whole signal, based on only a few samples, is possible. In order to do that, we incorporate the training signals into the Tikhonov regularization framework and we perform the Principal Component Analysis decomposition, which is well known for its compaction properties. The method yields a simple closed form analytical solution that does not require iter- ative processing. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This is the key to introduce and prove the formula for calculations of the signal recovery error. In this paper we show that an average recovery error is approximately inversely proportional to the number of acquired samples

    Studies of unicellular micro-organisms Saccharomyces cerevisiae by means of Positron Annihilation Lifetime Spectroscopy

    Get PDF
    Results of Positron Annihilation Lifetime Spectroscopy (PALS) and microscopic studies on simple microorganisms: brewing yeasts are presented. Lifetime of ortho - positronium (o-Ps) were found to change from 2.4 to 2.9 ns (longer lived component) for lyophilised and aqueous yeasts, respectively. Also hygroscopicity of yeasts in time was examined, allowing to check how water - the main component of the cell - affects PALS parameters, thus lifetime of o-Ps were found to change from 1.2 to 1.4 ns (shorter lived component) for the dried yeasts. The time sufficient to hydrate the cells was found below 10 hours. In the presence of liquid water an indication of reorganization of yeast in the molecular scale was observed. Microscopic images of the lyophilised, dried and wet yeasts with best possible resolution were obtained using Inverted Microscopy (IM) and Environmental Scanning Electron Microscopy (ESEM) methods. As a result visible changes to the surface of the cell membrane were observed in ESEM images.Comment: Nukleonika (2015

    PALS investigations of free volumes thermal expansion of J-PET plastic scintillator synthesized in polystyrene matrix

    Get PDF
    The polystyrene dopped with 2,5-diphenyloxazole as a primary fluor and 2-(4-styrylphenyl)benzoxazole as a wavelength shifter, prepared as a plastic scintillator was investigated using positronium probe in wide range of temperatures from 123 to 423 K. Three structural transitions at 260 K, 283 K and 370 K were found in the material. In the o-Ps intensity dependence on temperature, the significant hysteresis is observed. Heated to 370 K, the material exhibits the o-Ps intensity variations in time.Comment: in Nukleonika 201

    Addressing Reported Pro-Apoptotic Functions of NF-κB: Targeted Inhibition of Canonical NF-κB Enhances the Apoptotic Effects of Doxorubicin

    Get PDF
    The ability of the transcription factor NF-κB to upregulate anti-apoptotic proteins has been linked to the chemoresistance of solid tumors to standard chemotherapy. In contrast, recent studies have proposed that, in response to doxorubicin, NF-κB can be pro-apoptotic through repression of anti-apoptotic target genes. However, there is little evidence analyzing the outcome of NF-κB inhibition on the cytotoxicity of doxorubicin in studies describing pro-apoptotic NF-κB activity. In this study, we further characterize the activation of NF-κB in response to doxorubicin and evaluate its role in chemotherapy-induced cell death in sarcoma cells where NF-κB is reported to be pro-apoptotic. Doxorubicin treatment in U2OS cells induced canonical NF-κB activity as evidenced by increased nuclear accumulation of phosphorylated p65 at serine 536 and increased DNA–binding activity. Co-treatment with a small molecule IKKβ inhibitor, Compound A, abrogated this response. RT–PCR evaluation of anti-apoptotic gene expression revealed that doxorubicin-induced transcription of cIAP2 was inhibited by Compound A, while doxorubicin-induced repression of other anti-apoptotic genes was unaffected by Compound A or siRNA to p65. Furthermore, the combination of doxorubicin and canonical NF-κB inhibition with Compound A or siRNA to p65 resulted in decreased cell viability measured by trypan blue staining and MTS assay and increased apoptosis measured by cleaved poly (ADP-ribose) polymerase and cleaved caspase 3 when compared to doxorubicin alone. Our results demonstrate that doxorubicin-induced canonical NF-κB activity associated with phosphorylated p65 is anti-apoptotic in its function and that doxorubicin-induced repression of anti-apoptotic genes occurs independent of p65. Therefore, combination therapies incorporating NF-κB inhibitors together with standard chemotherapies remains a viable method to improve the clinical outcomes in patients with advanced stage malignancies

    Active roles for inhibitory  B kinases   and   in nuclear factor- B-mediated chemoresistance to doxorubicin

    Get PDF
    Chemotherapy agents have been shown to induce the transcription factor NF-κB and subsequent chemoresistance in fibrosarcomas and other cancers. The mechanism of NF-κB-mediated chemoresistance remains unclear, with a previous report suggesting that doxorubicin induces this response independent of the inhibitory κB kinases (IKKs). Other studies have indicated that IKKβ, but not IKKα, is required. Mouse embryo fibroblasts (MEF) devoid of IKKα, IKKβ, or both subunits (DKO) were treated with doxorubicin. The absence of either IKKα or IKKβ or both kinases resulted in impaired induction of NF-κB DNA-binding activity in response to doxorubicin. To provide a valid clinical correlate, HT1080 human fibrosarcoma cells were transfected with small interference RNAs (siRNAs) specific for IKKα or IKKβ and then subsequently treated with doxorubicin. Knockdown of IKKα severely impaired the ability of doxorubicin to initiate NF-κB DNA-binding activity. However, a decrease in either IKKα or IKKβ resulted in decreased phosphorylation of p65 in response to doxorubicin. The inhibition of doxorubicin-induced NF-κB activation by the knockdown of either catalytic subunit resulted in increased cleaved caspase 3 and cleaved PARP, and increased apoptosis when compared to doxorubicin alone. The results of this study validate current approaches aimed at NF-κB inhibition to improve clinical therapies. Moreover, we demonstrate that IKKα plays a critical role in NF-κB-mediated chemoresistance in response to doxorubicin and may serve as a potential target in combinational strategies to improve chemotherapeutic response
    corecore