284 research outputs found

    Gain Stabilization of a Submillimeter SIS Heterodyne Receiver

    Full text link
    We have designed a system to stabilize the gain of a submillimeter heterodyne receiver against thermal fluctuations of the mixing element. In the most sensitive heterodyne receivers, the mixer is usually cooled to 4 K using a closed-cycle cryocooler, which can introduce ~1% fluctuations in the physical temperature of the receiver components. We compensate for the resulting mixer conversion gain fluctuations by monitoring the physical temperature of the mixer and adjusting the gain of the intermediate frequency (IF) amplifier that immediately follows the mixer. This IF power stabilization scheme, developed for use at the Submillimeter Array (SMA), a submillimeter interferometer telescope on Mauna Kea in Hawaii, routinely achieves a receiver gain stability of 1 part in 6,000 (rms to mean). This is an order of magnitude improvement over the typical uncorrected stability of 1 part in a few hundred. Our gain stabilization scheme is a useful addition to SIS heterodyne receivers that are cooled using closed-cycle cryocoolers in which the 4 K temperature fluctuations tend to be the leading cause of IF power fluctuations.Comment: 7 pages, 6 figures accepted to IEEE Transactions on Microwave Theory and Technique

    Dark Matter Time Projection Chamber: Recent R&D Results

    Get PDF
    The Dark Matter Time Projection Chamber collaboration recently reported a dark matter limit obtained with a 10 liter time projection chamber filled with CF4 gas. The 10 liter detector was capable of 2D tracking (perpendicular to the drift direction) and 2D fiducialization, and only used information from two CCD cameras when identifying tracks and rejecting backgrounds. Since that time, the collaboration has explored the potential benefits of photomultiplier tube and electronic charge readout to achieve 3D tracking, and particle identification for background rejection. The latest results of this effort is described here

    Detection Prospects for Majorana Fermion WIMPless Dark Matter

    Full text link
    We consider both velocity-dependent and velocity-independent contributions to spin-dependent (SD) and spin-independent (SI) nuclear scattering (including one-loop corrections) of WIMPless dark matter, in the case where the dark matter candidate is a Majorana fermion. We find that spin-independent scattering arises only from the mixing of exotic squarks, or from velocity-dependent terms. Nevertheless (and contrary to the case of MSSM neutralino WIMPs), we find a class of models which cannot be detected through SI scattering, but can be detected at IceCube/DeepCore through SD scattering. We study the detection prospects for both SI and SD detection strategies for a large range of Majorana fermion WIMPless model parameters.Comment: 14 pages, 3 figures. v2: updated to match published versio

    DMTPC: A dark matter detector with directional sensitivity

    Get PDF
    By correlating nuclear recoil directions with the Earth's direction of motion through the Galaxy, a directional dark matter detector can unambiguously detect Weakly Interacting Massive Particles (WIMPs), even in the presence of backgrounds. Here, we describe the Dark Matter Time-Projection Chamber (DMTPC) detector, a TPC filled with CF4 gas at low pressure (0.1 atm). Using this detector, we have measured the vector direction (head-tail) of nuclear recoils down to energies of 100 keV with an angular resolution of <15 degrees. To study our detector backgrounds, we have operated in a basement laboratory on the MIT campus for several months. We are currently building a new, high-radiopurity detector for deployment underground at the Waste Isolation Pilot Plant facility in New Mexico.Comment: 4 pages, 2 figures, proceedings for the CIPANP 2009 conference, May 26-31, 200

    Background Rejection in the DMTPC Dark Matter Search Using Charge Signals

    Full text link
    The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing low-pressure gas TPC detectors for measuring WIMP-nucleon interactions. Optical readout with CCD cameras allows for the detection for the daily modulation in the direction of the dark matter wind, while several charge readout channels allow for the measurement of additional recoil properties. In this article, we show that the addition of the charge readout analysis to the CCD allows us too obtain a statistics-limited 90% C.L. upper limit on the e−e^- rejection factor of 5.6×10−65.6\times10^{-6} for recoils with energies between 40 and 200 keVee_{\mathrm{ee}}. In addition, requiring coincidence between charge signals and light in the CCD reduces CCD-specific backgrounds by more than two orders of magnitude.Comment: 8 pages, 6 figures. For proceedings of DPF 2011 conferenc
    • …
    corecore