364 research outputs found

    Mol. Microbiol.

    Get PDF

    Embo J.

    Get PDF

    Cell Microbiol.

    Get PDF
    Helicobacter pylori is one of the most common bacterial pathogens, infecting about 50% of the world population. The presence of a pathogenicity island (PAl) in H. pylori has been associated with gastric disease. We present evidence that the H. pylori protein encoded by the cytotoxin- associated gene A (cagA) is translocated and phosphorylated in infected epithelial cells. Two-dimensional gel electrophoresis (2-DE) of proteins isolated from infected AGS cells revealed H. pylori strain-specific and time- dependent tyrosine phosphorylation and dephosphorylation of several 125-135 kDa and 75-80 kDa proteins. Immunoblotting studies, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), cell fractionation and confocal microscopy demonstrated that one of the 125-135 kDa proteins represents the H. pylori CagA protein, which is translocated into the host cell membrane and the cytoplasm. Translocation of CagA was dependent on functional cagA gene and virulence (vir) genes of a type IV secretion apparatus composed of virB4, virB7, virB10, virB11 and virD4 encoded in the cag PAl of H. pylori. Our findings support the view that H. pylori actively translocates virulence determinants, including CagA, which could be involved in the development of a variety of gastric disease.SCOPUS: ar.jFLWINinfo:eu-repo/semantics/publishe

    Induction of TLR-2 and TLR-5 Expression by Helicobacter pylori Switches cagPAI-Dependent Signalling Leading to the Secretion of IL-8 and TNF-Ξ±

    Get PDF
    Helicobacter pylori is the causative agent for developing gastritis, gastric ulcer, and even gastric cancer. Virulent strains carry the cag pathogenicity island (cagPAI) encoding a type-IV secretion system (T4SS) for injecting the CagA protein. However, mechanisms of sensing this pathogen through Toll-like receptors (TLRs) and downstream signalling pathways in the development of different pathologies are widely unclear. Here, we explored the involvement of TLR-2 and TLR-5 in THP-1 cells and HEK293 cell lines (stably transfected with TLR-2 or TLR-5) during infection with wild-type H. pylori and isogenic cagPAI mutants. H. pylori triggered enhanced TLR-2 and TLR-5 expression in THP-1, HEK293-TLR2 and HEK293-TLR5 cells, but not in the HEK293 control. In addition, IL-8 and TNF-Ξ± cytokine secretion in THP-1 cells was induced in a cagPAI-dependent manner. Furthermore, we show that HEK293 cells are not competent for the uptake of T4SS-delivered CagA, and are therefore ideally suited for studying TLR signalling in the absence of T4SS functions. HEK293 control cells, which do not induce TLR-2 and TLR-5 expression during infection, only secreted cytokines in small amounts, in agreement with T4SS functions being absent. In contrast, HEK293-TLR2 and HEK293-TLR5 cells were highly competent for inducing the secretion of IL-8 and TNF-Ξ± cytokines in a cagPAI-independent manner, suggesting that the expression of TLR-2 or TLR-5 has profoundly changed the capability to trigger pro-inflammatory signalling upon infection. Using phospho-specific antibodies and luciferase reporter assays, we further demonstrate that H. pylori induces IRAK-1 and IΞΊB phosphorylation in a TLR-dependent manner, and this was required for activation of transcription factor NF-ΞΊB. Finally, NF-ΞΊB activation in HEK293-TLR2 and HEK293-TLR5 cells was confirmed by expressing p65-GFP which was translocated from the cytoplasm into the nucleus. These data indicate that H. pylori-induced expression of TLR-2 and TLR-5 can qualitatively shift cagPAI-dependent to cagPAI-independent pro-inflammatory signalling pathways with possible impact on the outcome of H. pylori-associated diseases

    A Comprehensive Sequence and Disease Correlation Analyses for the C-Terminal Region of CagA Protein of Helicobacter pylori

    Get PDF
    Chronic Helicobacter pylori infection is known to be associated with the development of peptic ulcer, gastric cancer and gastric lymphoma. Currently, the bacterial factors of H. pylori are reported to be important in the development of gastroduodenal diseases. CagA protein, encoded by the cagA, is the best studied virulence factor of H. pylori. The pathogenic CagA protein contains a highly polymorphic Glu-Pro-Ile-Tyr-Ala (EPIYA) repeat region in the C-terminal. This repeat region is reported to be involved in the pathogenesis of gastroduodenal diseases. The segments containing EPIYA motifs have been designated as segments A, B, C, and D; however the classification and disease relation are still unclear. This study used 560 unique CagA sequences containing 1,796 EPIYA motifs collected from public resources, including 274 Western and 286 East Asian strains with clinical data obtained from 433 entries. Fifteen types of EPIYA or EPIYA-like sequences are defined. In addition to four previously reported major segment types, several minor segment types (e.g., segment Bβ€², Bβ€²β€²) and more than 30 sequence types (e.g., ABC, ABD) were defined using our classification method. We confirm that the sequences from Western and East Asian strains contain segment C and D, respectively. We also confirm that strains with two EPIYA segment C have a greater chance of developing gastric cancer than those with one segment C. Our results shed light on the relationships between the types of CagAs, the country of origin of each sequence type, and the frequency of gastric disease

    Association of LEC and tnpA Helicobacter pylori genes with gastric cancer in a Brazilian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>H. pylori </it>seroprevalence in Brazilians varies and is dependent on socioeconomic status, sanitation conditions and ethnicity; furthermore, <it>H. pylori </it>is not always associated with the incidence of gastric cancer, suggesting the role of more virulent strains. The purpose of this study was to analyze the association of more virulent <it>H. pylori </it>strains with gastric cancer.</p> <p>Methods</p> <p>DNA was extracted from gastric biopsies of thirty-four cases of gastric cancer (11 intestinal-type, 23 diffuse-type), and thirty-four of patients with endoscopic gastritis. The presence of <it>cag</it>PAI genes (<it>cagA</it>, <it>cagA </it>promoter, <it>cagE</it>, <it>cagM</it>, <it>tnpB</it>, <it>tnpA</it>, <it>cagT </it>and the left end of the <it>cag</it>II (LEC)) and <it>babA </it>were analyzed by PCR.</p> <p>Results</p> <p>Comparison of <it>H. pylori </it>isolates from gastric cancer and gastritis patients showed significant associations of <it>tnpA </it>and LEC with gastric cancer (73.5% [OR, 6.66; 95% CI, 2.30-19.25] and 58.8% [OR, 10.71; 95% CI, 3.07-37.28] of cases, respectively). Other <it>cag</it>PAI genes were detected in both groups at similar frequencies.</p> <p>Conclusions</p> <p><it>tnpA </it>and LEC of <it>H. pylori cag</it>PAI were associated with gastric cancer; nonetheless, these results were restricted within this group of patients and further studies are needed to confirm these results in a larger sample and determine their role in gastric carcinogenesis.</p

    Structural and functional characterizations of mung bean mitochondrial nucleoids

    Get PDF
    Mitochondrial nucleoids isolated from mung bean seedlings exhibited a chromatin-like structure associated with a membrane component. A similar structure, which underwent discrete changes during cotyledon development, was identified in situ. Isolated nucleoids consisted of essentially the same phospholipids, including cardiolipin, as whole mitochondria and proteins of inner- and outer-mitochondrial-membrane origin. Actin was consistently found with mitochondrial nucleoids prepared with different detergent concentrations. Formaldehyde cross-linking of cytochalasin B- and proteinase K-treated mitochondria further revealed that actin was associated with DNA in nucleoids. Mitochondrial nucleoids were self-sufficient in directing DNA synthesis in vitro in a pattern mimicking mtDNA synthesis in isolated mitochondria. In pulse-field gel electrophoresis, newly synthesized mtDNA separated into two major components, well-bound and fast-moving forms. Nucleoids DNA synthesis was resistant to aphidicolin but sensitive to N-ethylmaleimide, which indicates that a Ξ³-type DNA polymerase was responsible for this activity. Mitochondrial nucleoids were capable of self-directed RNA transcription in a non-random fashion in vitro. Consistent with and complementary to results from fungi and human cells done mostly in situ, our present work helps to establish the important paradigm that mitochondrial nucleoids in eukaryotes are more than mere mtDNA compaction and segregation entities but are centers of mtDNA maintenance and expression

    Helicobacter pylori Counteracts the Apoptotic Action of Its VacA Toxin by Injecting the CagA Protein into Gastric Epithelial Cells

    Get PDF
    Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+ H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host

    Helicobacter pylori cagA gene variants in Malaysians of different ethnicity

    Get PDF
    We have defined DNA repeat variability in the 3β€²-terminus of the cagA gene of Helicobacter pylori strains from Malaysian patients of different ethnicities. We identified different alleles based on the EPIYA repeats. cagA types A-B-D and A-B-B-D are more similar to the sequence of Japanese strains, whereas cagA types A-B-C, A-B-C-C, A-B and A-C displayed similarity to strain 26695 sequences. A significant association was found between cagA genotypes and patients’ ethnicity, with cagA type A-B-D being predominantly isolated from Chinese patients and cagA type A-B-C from Malays and Indians. Our data further corroborate the possibility that variant biological activity of CagA may affect the host specificity and/or pathogenicity of H. pylori
    • …
    corecore