722 research outputs found

    The secondary minimum in YY Her: Evidence for a tidally distorted giant

    Get PDF
    We present and analyze quiescent UBVRI light curves of the classical symbiotic binary YY Her. We show that the secondary minimum, which is clearly visible only in the quiescent VRI light curves, is due to ellipsoidal variability of the red giant component. Our simple light curve analysis, by fitting of the Fourier cosine series, resulted in a self-consistent phenomenological model of YY Her, in which the periodic changes can be described by a combination of the ellipsoidal changes and a sinusoidal changes of the nebular continuum and line emission.Comment: 5 pages, 2 figures, to appear in Astronomy & Astrophysic

    Coherent population trapping in quantized light field

    Full text link
    A full quantum treatment of coherent population trapping (CPT) is given for a system of resonantly coupled atoms and electromagnetic field. We develop a regular analytical method of the construction of generalized dark states (GDS). It turns out that GDS do exist for all optical transitions Fg→FeF_g\to F_e, including bright transitions F→F+1F\to F+1 and F′′→F′′F''\to F'' with F′′F'' a half-integer, for which the CPT effect is absent in a classical field. We propose an idea to use an optically thick medium with a transition F′′→F′′F''\to F'' with F′′≥3/2F'' \ge 3/2 a half-integer as a ''quantum filter'', which transmits only a quantum light.Comment: revtex4, twocolumn, 6 pages, including 1 figur

    Assessment of genetic diversity and phylogenetic relationships in Black Pied cattle in the Novosibirsk Region using microsatellite markers

    Get PDF
    There are currently over a thousand indigenous cattle breeds well adapted to local habitat conditions thanks to their long history of evolution and breeding. Identification of the genetic variations controlling the adaptation of local cattle breeds for their further introduction into the genome of highly productive global breeds is a matter of great relevance. Studying individual populations of the same breed with the use of microsatellite markers makes it possible to assess their genetic diversity, relationships, and breed improvement potential. Although the Black Pied breed is the most common dairy cattle breed in Russia, there are only a few studies on genetic diversity in local Black Pied populations in some Russian regions. The goal of the present study was to analyze the genetic diversity in Black Pied cattle populations in the Novosibirsk Region and compare them with other Russian populations; to identify significantly divergent populations with a view to preserving them under the programs aimed at maintaining the genetic diversity of the domestic Black Pied breed. DNA samples from 4788 animals of the Black Pied breed from six breeding enterprises in the Novosibirsk Region have been studied using 11 microsatellite markers. No significant differences in genetic variability parameters were found between individual populations. Private alleles have been identified in five out of six populations. Five populations have shown inbreeding coefficient values (FIS) below zero, which indicates heterozygosity excess. The population distribution test, principal component analysis, FST and DEST values, cluster analysis, and phylogenetic analysis have revealed two populations genetically distinct from the others. Essentially, the genetic diversity parameters of the six studied Black Pied cattle populations from the Novosibirsk Region show no significant differences from other Russian populations of the breed. Excess heterozygosity is observed in most breeding enterprises, which is a sign of a low inbreeding rate. To maintain the genetic diversity of the Russian Black Pied cattle, we recommend focusing on the two populations with significant genetic distinctions from the others

    Unified ab initio treatment of attosecond photoionization and Compton scattering

    Full text link
    We present a new theoretical approach to attosecond laser-assisted photo- and Compton ionization. Attosecond x-ray absorption and scattering are described by \hat{\mathrsfs{S}}^{(1,2)}-matrices, which are coherent superpositions of "monochromatic" S^(1,2)\hat{S}^{(1,2)}-matrices in a laser-modified Furry representation. Besides refining the existing theory of the soft x-ray photoelectron attosecond streak camera and spectral phase interferometry (ASC and ASPI), we formulate a theory of hard x-ray photoelectron and Compton ASC and ASPI. The resulting scheme has a simple structure and leads to closed-form expressions for ionization amplitudes. We investigate Compton electron interference in the separable Coulomb-Volkov continuum with both Coulomb and laser fields treated non-perturbatively. We find that at laser-field intensities below 1013^{13} Wcm−2^{-2} normalized Compton lines almost coincide with the lines obtained in the laser-free regime. At higher intensities, attosecond interferences survive integration over electron momenta, and feature prominently in the Compton lines themselves. We define a regime where the electron ground-state density can be measured with controllable accuracy in an attosecond time interval. The new theory provides a firm basis for extracting photo- and Compton electron phases and atomic and molecular wavefunctions from experimental data.Comment: 15 pages, 5 figure

    Correlation Between Structure And C-Afm Contrast Of 180-Degree Domain Walls In Rhombohedral Bati03

    Get PDF
    Using Landau-Ginzburg-Devonshire theory we describe 180-degree domain wall structure, intrinsic energy and carrier accumulation in rhombohedral phase of BaTiO3 as a function of the wall orientation and flexoelectric coupling strength. Two types of domain wall structures (phases of the wall) exist depending on the wall orientation. The low-energy 'achiral' phase occurs in the vicinity of the {110} wall orientation and has odd polarization profile invariant with respect to inversion about the wall center. The second 'chiral' phase occurs around {211} wall orientations and corresponds to mixed parity domain walls that may be of left-handed or right-handed chirality. The transformation between the phases is abrupt, accompanied with 20-30% change of the domain wall thickness and can happen at fixed wall orientation with temperature change. We suggest that the phase transition may be detected through domain wall thickness change or by c-AFM. The structure of the domain wall is correlated to its conductivity through polarization component normal to the domain wall, which causes free carriers accumulation. Depending on the temperature and flexoelectric coupling strength relative conductivity of the wall becomes at least one order of magnitude higher than in the single-domain region, creating c-AFM contrast enhancement pronounced and detectable.Comment: 31 pages, 10 figures, Supplementary material
    • …
    corecore