160 research outputs found

    Superhyperfine interactions in Ce3+ doped LiYF4 crystal: ENDOR measurements

    Full text link
    The first observation of the resolved Mims electron-nuclear double resonance (ENDOR) spectra from the nearby and remote nuclei of 19F and 7Li nuclei on impurity Ce3+ ions in LiYF4 crystal is reported. It shows that LiYF4:Ce3+ system can be exploited as a convenient matrix for performing spin manipulations and adjusting quantum computation protocols while ENDOR technique could be used for the investigation of electron-nuclear interaction with all the nuclei of the system and exploited for the electron-nuclear spin manipulations.Comment: 4 pages, 2 figures, 1 Table. Reported on Theor-2017 (Kazan, Russia) Conferenc

    High-frequency pulsed ENDOR spectroscopy of the NV- centre in the commercial HPHT diamond

    Get PDF
    © 2015 Elsevier Inc. All rights reserved. This work reports direct 94 GHz ENDOR spectroscopy of the 14N nuclei in the NV- centre in single-crystal diamond. Roadmaps of ENDOR frequencies were measured and hyperfine/quadrupole interaction parameters were obtained, with AX,Y = -2.7 MHz, AZ = -2.2 MHz and P = -4.8 MHz. The sign and value of each parameter was calculated using spin Hamiltonian matrix diagonalization, first and second order perturbation theory and confirmed experimentally. Magnetic field magnitude was measured by 13C ENDOR signal with 0.02% precision or 0.5 mT. The orientation of quadrupole, hyperfine and fine structure tensors are the same within error of experiment, g-factor is isotropic

    ヨーロッパの総合医制度

    Get PDF
    Coherent spin dynamics of impurity Yb3+ ions in the CaWO4 single crystal has been studied using X - and W -band EPR. Rabi oscillations of the sample magnetization with damping times comparable to their period, driven by pulses of the microwave field with duration up to 5μs, were observed. The largest value of the single-qubit figure of merit (∼6400) is obtained for the high-field component in the Y 171 b X -band EPR spectrum. The spin-lattice relaxation time of the Yb3+ ions shortens with the increasing resonance frequency while the phase memory time, in contrast, grows noticeably. Variations of the phase memory times are interpreted in terms of spectral and instantaneous diffusions. The increase of the coherence time at the W band can be used for the application of rare-earth ions as qubits in quantum computing as it has been proposed recently. © 2009 The American Physical Society

    Reply to 'Comment on "angstrom-scale probing of paramagnetic centers location in nanodiamonds by <sup>3</sup>He NMR at low temperatures"' by A. Shames, V. Osipov and A. Panich,: Phys. Chem. Chem. Phys. 2018, 20, DOI: 10.1039/c8cp03331e

    Get PDF
    © the Owner Societies 2018. Shames et al. made a comment on our article (DOI: 10.1039/C7CP05898E) stating that their experience in EPR studies of detonation nanodiamonds suggests the existence of two main types of paramagnetic center in detonation nanodiamonds which questions our results. In this reply we provide insights into why there is only one main type of paramagnetic centers detected in nanodiamonds used in this work, which validates the correctness of the proposed original method to determine the distances between paramagnetic centers and nanoparticle surfaces by 3He NMR

    Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds

    Get PDF
    © Kazan Federal University (KFU). Size-calibrated commercial nanodiamonds synthesized by high-pressure high-temperature (HPHT) technique were studied by high-frequency W- and conventional X-band electron paramagnetic resonance (EPR) spectroscopy. The numbers of spins in the studied samples were estimated. The coreshell model of the HPHT nanodiamonds was proposed to explain the observed dependence of the concentration of the N0 paramagnetic centers. Two other observed paramagnetic centers are attributed to the two types of structures in the nanodiamond shell

    Observation of the triplet metastable dtate of shallow donor pairs in AlN crystals with a negative-U behavior: A high-frequency EPR and ENDOR study

    Get PDF
    Theoretical predictions about the n-type conductivity in nitride semiconductors are discussed in the light of results of a high-frequency EPR an ENDOR study. It is shown that two types of effective-mass-like, shallow donors with a delocalized wave function exist in unintentionally doped AlN. The experiments demonstrate how the transformation from a shallow donor to a deep (DX) center takes place and how the deep DX center can be reconverted into a shallow donor forming a spin triplet and singlet states. © 2008 The American Physical Society
    corecore