53 research outputs found

    Intravesical Treatments of Bladder Cancer: Review

    Get PDF
    For bladder cancer, intravesical chemo/immunotherapy is widely used as adjuvant therapies after surgical transurethal resection, while systemic therapy is typically reserved for higher stage, muscle-invading, or metastatic diseases. The goal of intravesical therapy is to eradicate existing or residual tumors through direct cytoablation or immunostimulation. The unique properties of the urinary bladder render it a fertile ground for evaluating additional novel experimental approaches to regional therapy, including iontophoresis/electrophoresis, local hyperthermia, co-administration of permeation enhancers, bioadhesive carriers, magnetic-targeted particles and gene therapy. Furthermore, due to its unique anatomical properties, the drug concentration-time profiles in various layers of bladder tissues during and after intravesical therapy can be described by mathematical models comprised of drug disposition and transport kinetic parameters. The drug delivery data, in turn, can be combined with the effective drug exposure to infer treatment efficacy and thereby assists the selection of optimal regimens. To our knowledge, intravesical therapy of bladder cancer represents the first example where computational pharmacological approach was used to design, and successfully predicted the outcome of, a randomized phase III trial (using mitomycin C). This review summarizes the pharmacological principles and the current status of intravesical therapy, and the application of computation to optimize the drug delivery to target sites and the treatment efficacy

    Role of genetic testing for inherited prostate cancer risk: Philadelphia prostate cancer consensus conference 2017

    Get PDF
    Purpose: Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-dri

    The effect of toremifene citrate on BMD in men on ADT: A phase III clinical trial

    No full text

    Alterations in tropomyosin isoform expression in human transitional cell carcinoma of the urinary bladder

    No full text
    Previous studies of transformed rodent fibroblasts have suggested that specific isoforms of the actin-binding protein tropomyosin (TM) could function as suppressors of transformation, but an analysis of TM expression in patient tumor tissue is limited. The purpose of our study was to characterize expression of the different TM isoforms in human transitional cell carcinoma of the urinary bladder by immunohistochemistry and Western blot analysis. We found that TM1 and TM2 protein levels were markedly reduced and showed >60% reduction in 61% and 55% of tumor samples, respectively. TM5, which was expressed at very low levels in normal bladder mucosa, exhibited aberrant expression in 91% of tumor specimens. The Western blot findings were confirmed by immunohistochemical analysis in a number of tumors. We then investigated the mechanism underlying TM expression deregulation, in the T24 human bladder cancer cell line. We showed that levels of TM1, TM2 and TM3 are reduced in T24 cells, but significantly upregulated by inhibition of the mitogen-activated protein kinase-signaling pathway. In addition, inhibition of this pathway was accompanied by restoration of stress fibers. Overall, changes in TM expression levels seem to be an early event during bladder carcinogenesis. We conclude that alterations in TM isoform expression may provide further insight into malignant transformation in transitional cell carcinomas of the bladder and may be a useful target for early detection strategies
    • …
    corecore