530 research outputs found

    Solving Gapped Hamiltonians Locally

    Full text link
    We show that any short-range Hamiltonian with a gap between the ground and excited states can be written as a sum of local operators, such that the ground state is an approximate eigenvector of each operator separately. We then show that the ground state of any such Hamiltonian is close to a generalized matrix product state. The range of the given operators needed to obtain a good approximation to the ground state is proportional to the square of the logarithm of the system size times a characteristic "factorization length". Applications to many-body quantum simulation are discussed. We also consider density matrices of systems at non-zero temperature.Comment: 13 pages, 2 figures; minor changes to references, additional discussion of numerics; additional explanation of nonzero temperature matrix product for

    Self-Similarity and Localization

    Full text link
    The localized eigenstates of the Harper equation exhibit universal self-similar fluctuations once the exponentially decaying part of a wave function is factorized out. For a fixed quantum state, we show that the whole localized phase is characterized by a single strong coupling fixed point of the renormalization equations. This fixed point also describes the generalized Harper model with next nearest neighbor interaction below a certain threshold. Above the threshold, the fluctuations in the generalized Harper model are described by a strange invariant set of the renormalization equations.Comment: 4 pages, RevTeX, 2 figures include

    Universal criterion for the breakup of invariant tori in dissipative systems

    Full text link
    The transition from quasiperiodicity to chaos is studied in a two-dimensional dissipative map with the inverse golden mean rotation number. On the basis of a decimation scheme, it is argued that the (minimal) slope of the critical iterated circle map is proportional to the effective Jacobian determinant. Approaching the zero-Jacobian-determinant limit, the factor of proportion becomes a universal constant. Numerical investigation on the dissipative standard map suggests that this universal number could become observable in experiments. The decimation technique introduced in this paper is readily applicable also to the discrete quasiperiodic Schrodinger equation.Comment: 13 page

    Anything You Can Do, You Can Do Better: Neural Substrates of Incentive-Based Performance Enhancement

    Get PDF
    Performance-based pay schemes in many organizations share the fundamental assumption that the performance level for a given task will increase as a function of the amount of incentive provided. Consistent with this notion, psychological studies have demonstrated that expectations of reward can improve performance on a plethora of different cognitive and physical tasks, ranging from problem solving to the voluntary regulation of heart rate. However, much less is understood about the neural mechanisms of incentivized performance enhancement. In particular, it is still an open question how brain areas that encode expectations about reward are able to translate incentives into improved performance across fundamentally different cognitive and physical task requirements

    Collision and symmetry-breaking in the transition to strange nonchaotic attractors

    Get PDF
    Strange nonchaotic attractors (SNAs) can be created due to the collision of an invariant curve with itself. This novel ``homoclinic'' transition to SNAs occurs in quasiperiodically driven maps which derive from the discrete Schr\"odinger equation for a particle in a quasiperiodic potential. In the classical dynamics, there is a transition from torus attractors to SNAs, which, in the quantum system is manifest as the localization transition. This equivalence provides new insights into a variety of properties of SNAs, including its fractal measure. Further, there is a {\it symmetry breaking} associated with the creation of SNAs which rigorously shows that the Lyapunov exponent is nonpositive. By considering other related driven iterative mappings, we show that these characteristics associated with the the appearance of SNA are robust and occur in a large class of systems.Comment: To be appear in Physical Review Letter

    Dimer Decimation and Intricately Nested Localized-Ballistic Phases of Kicked Harper

    Full text link
    Dimer decimation scheme is introduced in order to study the kicked quantum systems exhibiting localization transition. The tight-binding representation of the model is mapped to a vectorized dimer where an asymptotic dissociation of the dimer is shown to correspond to the vanishing of the transmission coefficient thru the system. The method unveils an intricate nesting of extended and localized phases in two-dimensional parameter space. In addition to computing transport characteristics with extremely high precision, the renormalization tools also provide a new method to compute quasienergy spectrum.Comment: There are five postscript figures. Only half of the figure (3) is shown to reduce file size. However, missing part is the mirror image of the part show

    West Nile virus outbreak among horses in New York State, 1999 and 2000.

    Get PDF
    West Nile (WN) virus was identified in the Western Hemisphere in 1999. Along with human encephalitis cases, 20 equine cases of WN virus were detected in 1999 and 23 equine cases in 2000 in New York. During both years, the equine cases occurred after human cases in New York had been identified

    Disturbance spreading in incommensurate and quasiperiodic systems

    Full text link
    The propagation of an initially localized excitation in one dimensional incommensurate, quasiperiodic and random systems is investigated numerically. It is discovered that the time evolution of variances σ2(t)\sigma^2(t) of atom displacements depends on the initial condition. For the initial condition with nonzero momentum, σ2(t)\sigma^2(t) goes as tαt^\alpha with α=1\alpha=1 and 0 for incommensurate Frenkel-Kontorova (FK) model at VV below and above VcV_c respectively; and α=1\alpha=1 for uniform, quasiperiodic and random chains. It is also found that α=1β\alpha=1-\beta with β\beta the exponent of distribution function of frequency at zero frequency, i.e., ρ(ω)ωβ\rho(\omega)\sim \omega^{\beta} (as ω0\omega\to 0). For the initial condition with zero momentum, α=0\alpha=0 for all systems studied. The underlying physical meaning of this diffusive behavior is discussed.Comment: 8 Revtex Pages, 5 PS figures included, to appear in Phys. Rev. B April 200

    Phonon Localization in One-Dimensional Quasiperiodic Chains

    Full text link
    Quasiperiodic long range order is intermediate between spatial periodicity and disorder, and the excitations in 1D quasiperiodic systems are believed to be transitional between extended and localized. These ideas are tested with a numerical analysis of two incommensurate 1D elastic chains: Frenkel-Kontorova (FK) and Lennard-Jones (LJ). The ground state configurations and the eigenfrequencies and eigenfunctions for harmonic excitations are determined. Aubry's "transition by breaking the analyticity" is observed in the ground state of each model, but the behavior of the excitations is qualitatively different. Phonon localization is observed for some modes in the LJ chain on both sides of the transition. The localization phenomenon apparently is decoupled from the distribution of eigenfrequencies since the spectrum changes from continuous to Cantor-set-like when the interaction parameters are varied to cross the analyticity--breaking transition. The eigenfunctions of the FK chain satisfy the "quasi-Bloch" theorem below the transition, but not above it, while only a subset of the eigenfunctions of the LJ chain satisfy the theorem.Comment: This is a revised version to appear in Physical Review B; includes additional and necessary clarifications and comments. 7 pages; requires revtex.sty v3.0, epsf.sty; includes 6 EPS figures. Postscript version also available at http://lifshitz.physics.wisc.edu/www/koltenbah/koltenbah_homepage.htm
    corecore