6,067 research outputs found
The dependence of cosmological parameters estimated from the microwave background on non-gaussianity
The estimation of cosmological parameters from cosmic microwave experiments
has almost always been performed assuming gaussian data. In this paper the
sensitivity of the parameter estimation to different assumptions on the
probability distribution of the fluctuations is tested. Specifically, adopting
the Edgeworth expansion, I show how the cosmological parameters depend on the
skewness of the C_l spectrum. In the particular case of skewness independent of
the multipole number I find that the primordial slope, the baryon density and
the cosmological constant increase with the skewness.Comment: 4 pages, 4 figure
Chaplygin gas in light of recent Integrated Sachs--Wolfe effect data
We investigate the possibility of constraining Chaplygin dark energy models
with current Integrated Sachs Wolfe effect data. In the case of a flat universe
we found that generalized Chaplygin gas models must have an energy density such
that and an equation of state at 95% c.l.. We also
investigate the recently proposed Silent Chaplygin models, constraining
and at 95% c.l.. Better measurements of the CMB-LSS
correlation will be possible with the next generation of deep redshift surveys.
This will provide independent and complementary constraints on unified dark
energy models such as the Chaplygin gas.Comment: 5 pages, 4 figure
Signals of primordial phase transitions on CMB maps
The analysis of the CMB anisotropies is a rich source of cosmological
informations. In our study, we simulated the signals produced by the relics of
a first order phase transition occured during an inflationary epoch in the
early Universe. These relics are bubbles of true vacuum that leave a
characteristic non-Gaussian imprint on the CMB. We use different statistical
estimators in order to evaluate this non-Gaussianity. We obtain some limits on
the allowed values of the bubble parameters comparing our results with the
experimental data.
We also predict the possibility to detect this signal with the next high
resolution experiments.Comment: 2 pages, submitted to Proceedings of 9th Marcel Grossmann meetin
Detecting stable massive neutral particles through particle lensing
Stable massive neutral particles emitted by astrophysical sources undergo
deflection under the gravitational potential of our own galaxy. The deflection
angle depends on the particle velocity and therefore non-relativistic particles
will be deflected more than relativistic ones. If these particles can be
detected through neutrino telescopes, cosmic ray detectors or directional dark
matter detectors, their arrival directions would appear aligned on the sky
along the source-lens direction. On top of this deflection, the arrival
direction of non-relativistic particles is displaced with respect to the
relativistic counterpart also due to the relative motion of the source with
respect to the observer; this induces an alignment of detections along the sky
projection of the source trajectory. The final alignment will be given by a
combination of the directions induced by lensing and source proper motion. We
derive the deflection-velocity relation for the Milky Way halo and suggest that
searching for alignments on detection maps of particle telescopes could be a
way to find new particles or new astrophysical phenomena.Comment: 17 pages, 7 figures. Accepted by PR
Present limits to cosmic bubbles from the COBE-DMR three point correlation function
The existence of large scale voids in several galaxy surveys suggests the
occurence of an inflationary first order phase transition. This process
generates primordial bubbles that, before evolving into the present voids,
leave at decoupling a non-Gaussian imprint on the CMB. I this paper we evaluate
an analytical expression of the collapsed three point correlation function from
the bubble temperature fluctuations. Comparing the results with COBE-DMR
measures, we obtain upper limits on the allowed non-Gaussianity and hence on
the bubble parameters.Comment: 4 pages, 3 figures; submitted to MNRA
A Fast Frequency Sweep â Greenâs Function Based Analysis of Substrate Integrated Waveguide
In this paper, a fast frequency sweep technique is applied to the analysis of Substrate Integrated Waveguides performed with a Greenâs function technique. The well-known Asymptotic Waveform Evaluation technique is used to extract the PadĂš approximation of the frequency response of Substrate Integrated Waveguides devices. The analysis is extended to a large frequency range by adopting the Complex Frequency Hopping algorithm. It is shown that, with this technique, CPU time can be reduced of almost one order of magnitude with respect to a point by point computation
Observational Constraints on Silent Quartessence
We derive new constraints set by SNIa experiments (`gold' data sample of
Riess et al.), X-ray galaxy cluster data (Allen et al. Chandra measurements of
the X-ray gas mass fraction in 26 clusters), large scale structure (Sloan
Digital Sky Survey spectrum) and cosmic microwave background (WMAP) on the
quartessence Chaplygin model. We consider both adiabatic perturbations and
intrinsic non-adiabatic perturbations such that the effective sound speed
vanishes (Silent Chaplygin). We show that for the adiabatic case, only models
with equation of state parameter are allowed: this
means that the allowed models are very close to \LambdaCDM. In the Silent case,
however, the results are consistent with observations in a much broader range,
-0.3<\alpha<0.7.Comment: 7 pages, 12 figures, to be submitted to JCA
An entirely analytical cosmological model
The purpose of the present study is to show that in a particular cosmological
model, with an affine equation of state, one can obtain, besides the background
given by the scale factor, Hubble and deceleration parameters, a representation
in terms of scalar fields and, more important, explicit mathematical
expressions for the density contrast and the power spectrum. Although the model
so obtained is not realistic, it reproduces features observed in some previous
numerical studies and, therefore, it may be useful in the testing of numerical
codes and as a pedagogical tool.Comment: 4 pages (revtex4), 4 figure
- âŠ