7 research outputs found

    Square-wave voltammetric determination of primaquine in urine using a multi-walled carbon nanotube modified electrode

    Get PDF
    The electrochemical process involving primaquine was studied at a glassy carbon (GC) electrode modified with multi-walled carbon nanotubes (MWCNT). The GC/MWCNTs electrode promoted an intense oxidation peak for primaquine, improving signal when compared to the one observed using bare GC as electrode. Besides the increasing in active electrode area, the MWCNTs seemed to provide faster electron transfer. The linear analytical response for primaquine, in the concentration range from 0.1 to 5.0 μmol L−1, was achieved on a supporting electrolyte consisting of Britton-Robinson buffer (0.02 mol L−1; pH 7.00) and KCl (0.25 mol L−1). The quantitative assay using square-wave voltammetry was performed by successive additions of standard into the electrochemical cell, containing the sample, with instrumental limit of detection (LOD) of 7.3 μg L−1 (28 nmol L−1). A procedure involving liquid-liquid extraction and thin-layer chromatography provided selectivity and pre-concentration required for the determination of traces of primaquine in urine samples (LOD of the method of 146 ng L−1). Recoveries in urine samples were statistically similar to the one achieved by HPLC

    Determination of Kresoxim-Methyl in Water and in Grapes by High-Performance Liquid Chromatography (HPLC) Using PhotochemicalInduced Fluorescence and Dispersive Liquid-Liquid Microextraction (DLLME)

    Get PDF
    A high-performance chromatographic method was developed to determine the fungicide kresoxim-methyl. Off-line photochemical derivatization was used to induce the formation of a stable and fluorescent product since the fungicide does not present natural fluorescence. Intense fluorescence at 370/430nm was achieved by treating the analyte in solution at pH 6 to ultraviolet light for 45s. The chromatographic conditions included isocratic elution with 50/ 50% (v/v) acetonitrile/water and the photochemical product appeared at a retention time of 7.2min. The short and long term stabilities of the photoproduct were evaluated and variation of less than 5% was achieved. The limits of detection in water samples and in grapes samples were 0.019mg kg1 and 0.065mg kg1 of kresoxim-methyl residue, respectively. The linear response covered three orders of magnitude up to 10.6mg kg1 of kresoxim-methyl. The robustness was evaluated through a Box–Behnken experimental design showing the insignificance of all factors and their interactions. The potential interference of tebuconazole for the determination of kresoxim-methyl was studied. The use of the dispersive liquid-liquid microextraction (DLLME) allowed recoveries between 80% and 101% depending on concentration with the minimum generation of waste products

    Electrooxidation of trifloxystrobin at the boron-doped diamond electrode: electrochemical mechanism, quantitative determination and degradation studies

    No full text
    <p>The boron-doped diamond (BDD) presents attractive electrochemical sensing characteristics that are useful in analytical applications based on voltammetry and amperometry. It has a wide potential window in aqueous solutions enabling the quantification of the fungicide trifloxystrobin, measured at +1744 mV (<i>versus</i> Ag/AgCl), by square-wave anodic voltammetry in a Britton–Robinson (BR) buffer (0.04 mol L<sup>−1;</sup> pH 4.00)/acetonitrile 70/30% v/v. The activation of the electrode was made using galvanostatic chronopotentiometry and cyclic voltammetry (CV). The linear analyte addition curve, <i>I</i><i><sub>p</sub></i> (µA) = (1.0 × 10<sup>–1</sup> ± 4.8 × 10<sup>–6</sup>) C (mol L<sup>−1</sup>) + (8.8 × 10<sup>–2</sup> ± 1.1 × 10<sup>–3</sup>); <i>R</i><sup>2</sup> = 0.997, was obtained using amplitude of 40 mV, frequency of 30 Hz, step potential of 20 mV. The instrumental limit of detection (LOD) was 1.4 × 10<sup>–7</sup> mol L<sup>−1</sup> (0.058 mg L<sup>−1</sup>) and the dynamic linear range covered three decades (up to 1 × 10<sup>–5</sup> mol L<sup>−1</sup> or 4.1 mg L<sup>−1</sup>). The samples were analysed with recoveries about 80% in orange juice samples and from 92.4% to 104.0% in water samples. A study to evaluate potential interferences was made in the presence of other fungicides. Diagnostic studies indicated that oxidation of trifloxystrobin in aqueous medium at the surface of the BDD is irreversible, involving two steps, each one with two electrons. The UV degradation of trifloxystrobin was evaluated using the proposed electrochemical method and the kinetics of degradation established with half-life of 1.07 min.</p

    Comparison of Gold Nanoparticles Prepared Using Monobasic Sodium Citrate or Sodium Borohydride for Neomycin Determination in Saliva after Solid-Phase Extraction (SPE) on a Molecularly Imprinted Polymer (MIP)

    No full text
    Two distinct spherical gold nanoparticles (AuNPs) were compared for the spectrophotometric determination of neomycin in saliva. The AuNPs were produced using AuCl3 and monobasic sodium citrate (in water bath at 100 °C) under magnetic stirring (AuNPs-citrate) and using HAuCl4 and NaBH4, at room-temperature under mechanical agitation in a commercial reactor (AuNPs-H). Both AuNPs were spherical with diameters of 7.7 nm (AuNPs-H) and 26.1 nm (AuNPs-citrate) and the maximum wavelength of the localized surface plasmon resonance (LSPR) bands were at 511 nm (AuNPs-H) and 529 nm (AuNPs-citrate). Equivalent spectral extinctions were found despite the fact the large difference in concentrations of AuNPs in dispersions: 4.2 × 10−9 mol L−1 for the AuNPs-H and 8.7 × 10−11 mol L−1 for the AuNPs-citrate. Both AuNPs interacted with aminoglycosides (AMG), affecting intensity of the LSPR band as the concentration of AMG increased. The response of the AuNPs-H was more sensitive toward AMG covering the following ranges: 0.6–600 µg L−1 (gentamicin), 7.3–550 µg L−1 (neomycin) and 14–520 µg L−1 (kanamycin). AuNPs-H optical response was more robust in function of the pH with AuNPs-citrate response only observed in acid solution, favoring electrostatic interaction with AMG. Catalytic activity of AuNPs-H, in reducing the 4-phenolate ion, presented a higher rate constant (4.3 × 10−3 s−1) and was used as analytical probe to determine neomycin in saliva after solid phase extraction with a commercially available AMG imprinted polymer enabling quantification to 0.36 μg of the analyte.</p

    Simple, Direct and Simultaneous Stripping Voltammetric Determination of Lead and Copper in Gasoline Using an In Situ Mercury Film Electrode

    No full text
    An improved procedure is presented to determine Pb(II) and Cu(II) in gasoline using a mercury film electrode generated in situ. The method is based on the reduction of the metal ions at adequate potentials on the glassy carbon electrode, in whose optimized microemulsion medium composition, the ions can be determined directly and simultaneously by differential pulse anodic stripping voltammetry. Good results were obtained in terms of analytical performance and voltammetric wave forms, with two stripping peaks near to -0.420 V and -0.13 V, attributed to Pb(II) and Cu(II), respectively. Linear responses for both metal ions indicated quite low detection limits (2.1x 10(-9) mol L-1 for Pb(II) and 2.4 x 10(-9) mol L-1 for Cu(II)). The method was applied successfully to real gasoline samples, presenting good results for precision (variation coefficients of 12.4% and 10.2%) and accuracy (recoveries ranging from 96.7 to 99.33% and 101.33 to 102 .67%), for Pb(II) and Cu(II), respectively.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
    corecore