270 research outputs found

    Symmetric vortices for two-component Ginzburg-Landau systems

    Full text link
    We study Ginzburg--Landau equations for a complex vector order parameter Psi=(psi_+,psi_-). We consider symmetric (equivariant) vortex solutions in the plane R^2 with given degrees n_\pm, and prove existence, uniqueness, and asymptotic behavior of solutions for large r. We also consider the monotonicity properties of solutions, and exhibit parameter ranges in which both vortex profiles |psi_+|, |psi_i| are monotone, as well as parameter regimes where one component is non-monotone. The qualitative results are obtained by means of a sub- and supersolution construction and a comparison theorem for elliptic systems.Comment: 32 page

    Vortex density models for superconductivity and superfluidity

    Full text link
    We study some functionals that describe the density of vortex lines in superconductors subject to an applied magnetic field, and in Bose-Einstein condensates subject to rotational forcing, in quite general domains in 3 dimensions. These functionals are derived from more basic models via Gamma-convergence, here and in a companion paper. In our main results, we use these functionals to obtain descriptions of the critical applied magnetic field (for superconductors) and forcing (for Bose-Einstein), above which ground states exhibit nontrivial vorticity, as well as a characterization of the vortex density in terms of a non local vector-valued generalization of the classical obstacle problem.Comment: 34 page

    Required Separation to Mitigate Pounding of Adjacent Building Blocks

    Get PDF
    This research discusses the feasibility of using the required minimum separation distance based on SBC 301-2007. Moment resistance frames were designed with expansion joints requiring 400mm separation distance. Nonlinear response history analysis was conducted with four ground motions selected and scaled to match the risk-targeted response spectrum of NEOM city based on ASCE 7-16 provisions. An equivalent spring constant value based on floor lateral stiffness was selected as a gap link stiffness. Finally, an evaluation for the pounding response of adjacent blocks is presented along with the conclusions

    Vortex Rings in Fast Rotating Bose-Einstein Condensates

    Full text link
    When Bose-Eintein condensates are rotated sufficiently fast, a giant vortex phase appears, that is the condensate becomes annular with no vortices in the bulk but a macroscopic phase circulation around the central hole. In a former paper [M. Correggi, N. Rougerie, J. Yngvason, {\it arXiv:1005.0686}] we have studied this phenomenon by minimizing the two dimensional Gross-Pitaevskii energy on the unit disc. In particular we computed an upper bound to the critical speed for the transition to the giant vortex phase. In this paper we confirm that this upper bound is optimal by proving that if the rotation speed is taken slightly below the threshold there are vortices in the condensate. We prove that they gather along a particular circle on which they are evenly distributed. This is done by providing new upper and lower bounds to the GP energy.Comment: to appear in Archive of Rational Mechanics and Analysi
    • …
    corecore